BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

556 related articles for article (PubMed ID: 26237225)

  • 1. ARM-seq: AlkB-facilitated RNA methylation sequencing reveals a complex landscape of modified tRNA fragments.
    Cozen AE; Quartley E; Holmes AD; Hrabeta-Robinson E; Phizicky EM; Lowe TM
    Nat Methods; 2015 Sep; 12(9):879-84. PubMed ID: 26237225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Small RNA Sequencing Enhanced by AlkB-Facilitated RNA de-Methylation (ARM-Seq).
    Hrabeta-Robinson E; Marcus E; Cozen AE; Phizicky EM; Lowe TM
    Methods Mol Biol; 2017; 1562():231-243. PubMed ID: 28349464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removing roadblocks to deep sequencing of modified RNAs.
    Wilusz JE
    Nat Methods; 2015 Sep; 12(9):821-2. PubMed ID: 26317237
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleotide resolution profiling of m
    Lin S; Liu Q; Jiang YZ; Gregory RI
    Nat Protoc; 2019 Nov; 14(11):3220-3242. PubMed ID: 31619810
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selective Enzymatic Demethylation of N
    Dai Q; Zheng G; Schwartz MH; Clark WC; Pan T
    Angew Chem Int Ed Engl; 2017 Apr; 56(18):5017-5020. PubMed ID: 28371071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base-Resolution Sequencing Methods for Whole-Transcriptome Quantification of mRNA Modifications.
    Zhang LS; Dai Q; He C
    Acc Chem Res; 2024 Jan; 57(1):47-58. PubMed ID: 38079380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combining tRNA sequencing methods to characterize plant tRNA expression and post-transcriptional modification.
    Warren JM; Salinas-Giegé T; Hummel G; Coots NL; Svendsen JM; Brown KC; Drouard L; Sloan DB
    RNA Biol; 2021 Jan; 18(1):64-78. PubMed ID: 32715941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transfer RNA detection by small RNA deep sequencing and disease association with myelodysplastic syndromes.
    Guo Y; Bosompem A; Mohan S; Erdogan B; Ye F; Vickers KC; Sheng Q; Zhao S; Li CI; Su PF; Jagasia M; Strickland SA; Griffiths EA; Kim AS
    BMC Genomics; 2015 Sep; 16():727. PubMed ID: 26400237
    [TBL] [Abstract][Full Text] [Related]  

  • 9. tRNA base methylation identification and quantification via high-throughput sequencing.
    Clark WC; Evans ME; Dominissini D; Zheng G; Pan T
    RNA; 2016 Nov; 22(11):1771-1784. PubMed ID: 27613580
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conservation of tRNA and rRNA 5-methylcytosine in the kingdom Plantae.
    Burgess AL; David R; Searle IR
    BMC Plant Biol; 2015 Aug; 15():199. PubMed ID: 26268215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A high-throughput screening method for evolving a demethylase enzyme with improved and new functionalities.
    Wang Y; Katanski CD; Watkins C; Pan JN; Dai Q; Jiang Z; Pan T
    Nucleic Acids Res; 2021 Mar; 49(5):e30. PubMed ID: 33337498
    [TBL] [Abstract][Full Text] [Related]  

  • 12. YAMAT-seq: an efficient method for high-throughput sequencing of mature transfer RNAs.
    Shigematsu M; Honda S; Loher P; Telonis AG; Rigoutsos I; Kirino Y
    Nucleic Acids Res; 2017 May; 45(9):e70. PubMed ID: 28108659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistically robust methylation calling for whole-transcriptome bisulfite sequencing reveals distinct methylation patterns for mouse RNAs.
    Legrand C; Tuorto F; Hartmann M; Liebers R; Jacob D; Helm M; Lyko F
    Genome Res; 2017 Sep; 27(9):1589-1596. PubMed ID: 28684555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping of 7-methylguanosine (m
    Marchand V; Bourguignon-Igel V; Helm M; Motorin Y
    Methods Enzymol; 2021; 658():25-47. PubMed ID: 34517949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AlkB restores the biological function of mRNA and tRNA inactivated by chemical methylation.
    Ougland R; Zhang CM; Liiv A; Johansen RF; Seeberg E; Hou YM; Remme J; Falnes PØ
    Mol Cell; 2004 Oct; 16(1):107-16. PubMed ID: 15469826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MINTmap: fast and exhaustive profiling of nuclear and mitochondrial tRNA fragments from short RNA-seq data.
    Loher P; Telonis AG; Rigoutsos I
    Sci Rep; 2017 Feb; 7():41184. PubMed ID: 28220888
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbiome characterization by high-throughput transfer RNA sequencing and modification analysis.
    Schwartz MH; Wang H; Pan JN; Clark WC; Cui S; Eckwahl MJ; Pan DW; Parisien M; Owens SM; Cheng BL; Martinez K; Xu J; Chang EB; Pan T; Eren AM
    Nat Commun; 2018 Dec; 9(1):5353. PubMed ID: 30559359
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observing the fate of tRNA and its modifications by nucleic acid isotope labeling mass spectrometry: NAIL-MS.
    Heiss M; Reichle VF; Kellner S
    RNA Biol; 2017 Sep; 14(9):1260-1268. PubMed ID: 28488916
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational analysis, biochemical purification, and detection of tRNA-derived small RNA fragments.
    Keam SP; Sobala A; Humphreys DT; Suter CM; Hutvagner G
    Methods Mol Biol; 2014; 1173():157-67. PubMed ID: 24920368
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tRF2Cancer: A web server to detect tRNA-derived small RNA fragments (tRFs) and their expression in multiple cancers.
    Zheng LL; Xu WL; Liu S; Sun WJ; Li JH; Wu J; Yang JH; Qu LH
    Nucleic Acids Res; 2016 Jul; 44(W1):W185-93. PubMed ID: 27179031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.