These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
365 related articles for article (PubMed ID: 26237289)
1. Quantile regression analysis of censored longitudinal data with irregular outcome-dependent follow-up. Sun X; Peng L; Manatunga A; Marcus M Biometrics; 2016 Mar; 72(1):64-73. PubMed ID: 26237289 [TBL] [Abstract][Full Text] [Related]
2. ANALYSIS OF DEPENDENTLY CENSORED DATA BASED ON QUANTILE REGRESSION. Ji S; Peng L; Li R; Lynn MJ Stat Sin; 2014; 24(3):1411-1432. PubMed ID: 25382953 [TBL] [Abstract][Full Text] [Related]
4. Assessing quantile prediction with censored quantile regression models. Li R; Peng L Biometrics; 2017 Jun; 73(2):517-528. PubMed ID: 27931075 [TBL] [Abstract][Full Text] [Related]
5. Quantile regression for left-truncated semicompeting risks data. Li R; Peng L Biometrics; 2011 Sep; 67(3):701-10. PubMed ID: 21133883 [TBL] [Abstract][Full Text] [Related]
6. Non-crossing weighted kernel quantile regression with right censored data. Bang S; Eo SH; Cho YM; Jhun M; Cho H Lifetime Data Anal; 2016 Jan; 22(1):100-21. PubMed ID: 25511333 [TBL] [Abstract][Full Text] [Related]
7. A multiple imputation method based on weighted quantile regression models for longitudinal censored biomarker data with missing values at early visits. Lee M; Rahbar MH; Brown M; Gensler L; Weisman M; Diekman L; Reveille JD BMC Med Res Methodol; 2018 Jan; 18(1):8. PubMed ID: 29325529 [TBL] [Abstract][Full Text] [Related]
8. Quantile Regression Modeling of Latent Trajectory Features with Longitudinal Data. Ma H; Peng L; Fu H J Appl Stat; 2019; 46(16):2884-2904. PubMed ID: 32132765 [TBL] [Abstract][Full Text] [Related]
9. Multiple imputation for cure rate quantile regression with censored data. Wu Y; Yin G Biometrics; 2017 Mar; 73(1):94-103. PubMed ID: 27479513 [TBL] [Abstract][Full Text] [Related]
10. Parametric modeling of quantile regression coefficient functions with censored and truncated data. Frumento P; Bottai M Biometrics; 2017 Dec; 73(4):1179-1188. PubMed ID: 28182852 [TBL] [Abstract][Full Text] [Related]
11. Quantile regression for survival data with covariates subject to detection limits. Yu T; Xiang L; Wang HJ Biometrics; 2021 Jun; 77(2):610-621. PubMed ID: 32453884 [TBL] [Abstract][Full Text] [Related]
12. Quantile regression for longitudinal data with values below the limit of detection and time-dependent covariates-application to modeling carbon nanotube and nanofiber exposures. Chen IC; Bertke SJ; Dahm MM Ann Work Expo Health; 2024 Sep; 68(8):846-858. PubMed ID: 39141417 [TBL] [Abstract][Full Text] [Related]
13. Censored quantile regression with recursive partitioning-based weights. Wey A; Wang L; Rudser K Biostatistics; 2014 Jan; 15(1):170-81. PubMed ID: 23975800 [TBL] [Abstract][Full Text] [Related]
14. Quantile regression for doubly censored data. Ji S; Peng L; Cheng Y; Lai H Biometrics; 2012 Mar; 68(1):101-12. PubMed ID: 21950348 [TBL] [Abstract][Full Text] [Related]
15. Quantile Regression Adjusting for Dependent Censoring from Semi-Competing Risks. Li R; Peng L J R Stat Soc Series B Stat Methodol; 2015 Jan; 77(1):107-130. PubMed ID: 25574152 [TBL] [Abstract][Full Text] [Related]
16. Likelihood-based methods for estimating the association between a health outcome and left- or interval-censored longitudinal exposure data. Wannemuehler KA; Lyles RH; Manatunga AK; Terrell ML; Marcus M Stat Med; 2010 Jul; 29(16):1661-72. PubMed ID: 20572121 [TBL] [Abstract][Full Text] [Related]
17. Statistical inference in a growth curve quantile regression model for longitudinal data. Cho HR Biometrics; 2018 Sep; 74(3):855-862. PubMed ID: 29088497 [TBL] [Abstract][Full Text] [Related]
18. Estimation in regression models for longitudinal binary data with outcome-dependent follow-up. Fitzmaurice GM; Lipsitz SR; Ibrahim JG; Gelber R; Lipshultz S Biostatistics; 2006 Jul; 7(3):469-85. PubMed ID: 16428260 [TBL] [Abstract][Full Text] [Related]
19. Quantile regression for recurrent gap time data. Luo X; Huang CY; Wang L Biometrics; 2013 Jun; 69(2):375-85. PubMed ID: 23489055 [TBL] [Abstract][Full Text] [Related]
20. Generalizing Quantile Regression for Counting Processes with Applications to Recurrent Events. Sun X; Peng L; Huang Y; Lai HJ J Am Stat Assoc; 2016; 111(513):145-156. PubMed ID: 27212738 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]