These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

58 related articles for article (PubMed ID: 26237332)

  • 1. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers.
    Bruun S; Stoeppler D; Keidel A; Kuhlmann U; Luck M; Diehl A; Geiger MA; Woodmansee D; Trauner D; Hegemann P; Oschkinat H; Hildebrandt P; Stehfest K
    Biochemistry; 2015 Sep; 54(35):5389-400. PubMed ID: 26237332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complex Photochemistry within the Green-Absorbing Channelrhodopsin ReaChR.
    Krause BS; Grimm C; Kaufmann JCD; Schneider F; Sakmar TP; Bartl FJ; Hegemann P
    Biophys J; 2017 Mar; 112(6):1166-1175. PubMed ID: 28355544
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Retinal isomerization and water-pore formation in channelrhodopsin-2.
    Ardevol A; Hummer G
    Proc Natl Acad Sci U S A; 2018 Apr; 115(14):3557-3562. PubMed ID: 29555736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Time-resolved spectroscopic and electrophysiological data reveal insights in the gating mechanism of anion channelrhodopsin.
    Dreier MA; Althoff P; Norahan MJ; Tennigkeit SA; El-Mashtoly SF; Lübben M; Kötting C; Rudack T; Gerwert K
    Commun Biol; 2021 May; 4(1):578. PubMed ID: 33990694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Activated Reversible Imine Isomerization: Towards a Photochromic Protein Switch.
    Berbasova T; Santos EM; Nosrati M; Vasileiou C; Geiger JH; Borhan B
    Chembiochem; 2016 Mar; 17(5):407-14. PubMed ID: 26684483
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structures of the archaerhodopsin-3 transporter reveal that disordering of internal water networks underpins receptor sensitization.
    Bada Juarez JF; Judge PJ; Adam S; Axford D; Vinals J; Birch J; Kwan TOC; Hoi KK; Yen HY; Vial A; Milhiet PE; Robinson CV; Schapiro I; Moraes I; Watts A
    Nat Commun; 2021 Jan; 12(1):629. PubMed ID: 33504778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The rhodopsin-guanylyl cyclase of the aquatic fungus Blastocladiella emersonii enables fast optical control of cGMP signaling.
    Scheib U; Stehfest K; Gee CE; Körschen HG; Fudim R; Oertner TG; Hegemann P
    Sci Signal; 2015 Aug; 8(389):rs8. PubMed ID: 26268609
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin.
    Dokukina I; Weingart O
    Phys Chem Chem Phys; 2015 Oct; 17(38):25142-50. PubMed ID: 26351704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetics: 10 years after ChR2 in neurons--views from the community.
    Adamantidis A; Arber S; Bains JS; Bamberg E; Bonci A; Buzsáki G; Cardin JA; Costa RM; Dan Y; Goda Y; Graybiel AM; Häusser M; Hegemann P; Huguenard JR; Insel TR; Janak PH; Johnston D; Josselyn SA; Koch C; Kreitzer AC; Lüscher C; Malenka RC; Miesenböck G; Nagel G; Roska B; Schnitzer MJ; Shenoy KV; Soltesz I; Sternson SM; Tsien RW; Tsien RY; Turrigiano GG; Tye KM; Wilson RI
    Nat Neurosci; 2015 Sep; 18(9):1202-12. PubMed ID: 26308981
    [No Abstract]   [Full Text] [Related]  

  • 10. Cysteine Substitution and Labeling Provide Insight into Channelrhodopsin-2 Ion Conductance.
    Richards R; Dempski RE
    Biochemistry; 2015 Sep; 54(37):5665-8. PubMed ID: 26322955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetics: 10 years of microbial opsins in neuroscience.
    Deisseroth K
    Nat Neurosci; 2015 Sep; 18(9):1213-25. PubMed ID: 26308982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetics and the future of neuroscience.
    Boyden ES
    Nat Neurosci; 2015 Sep; 18(9):1200-1. PubMed ID: 26308980
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The primary photoreaction of channelrhodopsin-1: wavelength dependent photoreactions induced by ground-state heterogeneity.
    Stensitzki T; Muders V; Schlesinger R; Heberle J; Heyne K
    Front Mol Biosci; 2015; 2():41. PubMed ID: 26258130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. OPTOGENETICS. Expanding the optogenetics toolkit.
    Berndt A; Deisseroth K
    Science; 2015 Aug; 349(6248):590-1. PubMed ID: 26250674
    [No Abstract]   [Full Text] [Related]  

  • 15. A light-switchable bidirectional expression module allowing simultaneous regulation of multiple genes.
    Chen X; Li T; Wang X; Yang Y
    Biochem Biophys Res Commun; 2015 Oct; 465(4):769-76. PubMed ID: 26301633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigating neuronal function with optically controllable proteins.
    Zhou XX; Pan M; Lin MZ
    Front Mol Neurosci; 2015; 8():37. PubMed ID: 26257603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Explaining the mobility of retinal in activated rhodopsin and opsin.
    Mertz B; Feng J; Corcoran C; Neeley B
    Photochem Photobiol Sci; 2015 Nov; 14(11):1952-64. PubMed ID: 26248892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Membrane Potential Imaging with Other Optical Techniques.
    Jaafari N; Vogt KE; Saggau P; Leslie LM; Zecevic D; Canepari M
    Adv Exp Med Biol; 2015; 859():103-25. PubMed ID: 26238050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative insights in tissue growth and morphogenesis with optogenetics.
    Mim MS; Knight C; Zartman JJ
    Phys Biol; 2023 Sep; 20(6):. PubMed ID: 37678266
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodopsins: An Excitingly Versatile Protein Species for Research, Development and Creative Engineering.
    de Grip WJ; Ganapathy S
    Front Chem; 2022; 10():879609. PubMed ID: 35815212
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.