These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26237347)

  • 1. High-frequency nano-optomechanical disk resonators in liquids.
    Gil-Santos E; Baker C; Nguyen DT; Hease W; Gomez C; Lemaître A; Ducci S; Leo G; Favero I
    Nat Nanotechnol; 2015 Sep; 10(9):810-6. PubMed ID: 26237347
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High frequency GaAs nano-optomechanical disk resonator.
    Ding L; Baker C; Senellart P; Lemaitre A; Ducci S; Leo G; Favero I
    Phys Rev Lett; 2010 Dec; 105(26):263903. PubMed ID: 21231665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optomechanical detection of vibration modes of a single bacterium.
    Gil-Santos E; Ruz JJ; Malvar O; Favero I; Lemaître A; Kosaka PM; García-López S; Calleja M; Tamayo J
    Nat Nanotechnol; 2020 Jun; 15(6):469-474. PubMed ID: 32284570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tailoring Optical Forces Behavior in Nano-optomechanical Devices Immersed in Fluid Media.
    Rodrigues JR; Almeida VR
    Sci Rep; 2017 Oct; 7(1):14325. PubMed ID: 29085058
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gigahertz optoacoustic vibration in Sub-5 nm tip-supported nano-optomechanical metasurface.
    Gao R; He Y; Zhang D; Sun G; He JX; Li JF; Li MD; Yang Z
    Nat Commun; 2023 Jan; 14(1):485. PubMed ID: 36717581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High frequency optomechanical disk resonators in III-V ternary semiconductors.
    Guha B; Mariani S; Lemaître A; Combrié S; Leo G; Favero I
    Opt Express; 2017 Oct; 25(20):24639-24649. PubMed ID: 29041409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtogram scale high frequency nano-optomechanical resonators in water.
    Zhang H; Zhao X; Wang Y; Huang Q; Xia J
    Opt Express; 2017 Jan; 25(2):821-830. PubMed ID: 28157970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-Mediated Cascaded Locking of Multiple Nano-Optomechanical Oscillators.
    Gil-Santos E; Labousse M; Baker C; Goetschy A; Hease W; Gomez C; Lemaître A; Leo G; Ciuti C; Favero I
    Phys Rev Lett; 2017 Feb; 118(6):063605. PubMed ID: 28234503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nano-optomechanical Resonators for Sensitive Pressure Sensing.
    Chen Y; Liu S; Hong G; Zou M; Liu B; Luo J; Wang Y
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39211-39219. PubMed ID: 35994410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements.
    Gavartin E; Verlot P; Kippenberg TJ
    Nat Nanotechnol; 2012 Aug; 7(8):509-14. PubMed ID: 22728341
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optomechanical proposal for monitoring microtubule mechanical vibrations.
    Barzanjeh S; Salari V; Tuszynski JA; Cifra M; Simon C
    Phys Rev E; 2017 Jul; 96(1-1):012404. PubMed ID: 29347215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoparticle-Fluid Interactions at Ultrahigh Acoustic Vibration Frequencies Studied by Femtosecond Time-Resolved Microscopy.
    Yu K; Yang Y; Wang J; Hartland GV; Wang GP
    ACS Nano; 2021 Jan; 15(1):1833-1840. PubMed ID: 33448792
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale effects leading to non-Einstein-like decrease in viscosity.
    Mackay ME; Dao TT; Tuteja A; Ho DL; van Horn B; Kim HC; Hawker CJ
    Nat Mater; 2003 Nov; 2(11):762-6. PubMed ID: 14566332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nano-rheology of hydrogels using direct drive force modulation atomic force microscopy.
    Nalam PC; Gosvami NN; Caporizzo MA; Composto RJ; Carpick RW
    Soft Matter; 2015 Nov; 11(41):8165-78. PubMed ID: 26337502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sub-pg mass sensing and measurement with an optomechanical oscillator.
    Liu F; Alaie S; Leseman ZC; Hossein-Zadeh M
    Opt Express; 2013 Aug; 21(17):19555-67. PubMed ID: 24105503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new tuning fork-based instrument for oscillatory shear rheology of nano-confined liquids.
    Kapoor K; Kanawade V; Shukla V; Patil S
    Rev Sci Instrum; 2013 Feb; 84(2):025101. PubMed ID: 23464245
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compound piezoelectric cylindrical resonators as sensors of the rheological parameters of viscoelastic media.
    Kiełczyński P; Szalewski M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2007 Jun; 54(6):1199-206. PubMed ID: 17571818
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic actuation of silicon optomechanical resonators.
    Sridaran S; Bhave SA
    Opt Express; 2011 May; 19(10):9020-6. PubMed ID: 21643155
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy-efficient utilization of bipolar optical forces in nano-optomechanical cavities.
    Tian F; Zhou G; Du Y; Chau FS; Deng J; Tang X; Akkipeddi R
    Opt Express; 2013 Jul; 21(15):18398-407. PubMed ID: 23938711
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optomechanical mass spectrometry.
    Sansa M; Defoort M; Brenac A; Hermouet M; Banniard L; Fafin A; Gely M; Masselon C; Favero I; Jourdan G; Hentz S
    Nat Commun; 2020 Jul; 11(1):3781. PubMed ID: 32728047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.