BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

349 related articles for article (PubMed ID: 26237509)

  • 1. The active site of O-GlcNAc transferase imposes constraints on substrate sequence.
    Pathak S; Alonso J; Schimpl M; Rafie K; Blair DE; Borodkin VS; Albarbarawi O; van Aalten DMF
    Nat Struct Mol Biol; 2015 Sep; 22(9):744-750. PubMed ID: 26237509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Recognition of a glycosylation substrate by the O-GlcNAc transferase TPR repeats.
    Rafie K; Raimi O; Ferenbach AT; Borodkin VS; Kapuria V; van Aalten DMF
    Open Biol; 2017 Jun; 7(6):. PubMed ID: 28659383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Elucidating the protein substrate recognition of O-GlcNAc transferase (OGT) toward O-GlcNAcase (OGA) using a GlcNAc electrophilic probe.
    Kositzke A; Fan D; Wang A; Li H; Worth M; Jiang J
    Int J Biol Macromol; 2021 Feb; 169():51-59. PubMed ID: 33333092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aspartate Residues Far from the Active Site Drive O-GlcNAc Transferase Substrate Selection.
    Joiner CM; Levine ZG; Aonbangkhen C; Woo CM; Walker S
    J Am Chem Soc; 2019 Aug; 141(33):12974-12978. PubMed ID: 31373491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Roles of the tetratricopeptide repeat domain in O-GlcNAc transferase targeting and protein substrate specificity.
    Iyer SP; Hart GW
    J Biol Chem; 2003 Jul; 278(27):24608-16. PubMed ID: 12724313
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrophilic probes for deciphering substrate recognition by O-GlcNAc transferase.
    Hu CW; Worth M; Fan D; Li B; Li H; Lu L; Zhong X; Lin Z; Wei L; Ge Y; Li L; Jiang J
    Nat Chem Biol; 2017 Dec; 13(12):1267-1273. PubMed ID: 29058723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The superhelical TPR-repeat domain of O-linked GlcNAc transferase exhibits structural similarities to importin alpha.
    Jínek M; Rehwinkel J; Lazarus BD; Izaurralde E; Hanover JA; Conti E
    Nat Struct Mol Biol; 2004 Oct; 11(10):1001-7. PubMed ID: 15361863
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural insights into mechanism and specificity of O-GlcNAc transferase.
    Clarke AJ; Hurtado-Guerrero R; Pathak S; Schüttelkopf AW; Borodkin V; Shepherd SM; Ibrahim AF; van Aalten DM
    EMBO J; 2008 Oct; 27(20):2780-8. PubMed ID: 18818698
    [TBL] [Abstract][Full Text] [Related]  

  • 9.
    Selvan N; George S; Serajee FJ; Shaw M; Hobson L; Kalscheuer V; Prasad N; Levy SE; Taylor J; Aftimos S; Schwartz CE; Huq AM; Gecz J; Wells L
    J Biol Chem; 2018 Jul; 293(27):10810-10824. PubMed ID: 29769320
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Truncation of the TPR domain of OGT alters substrate and glycosite selection.
    Ramirez DH; Yang B; D'Souza AK; Shen D; Woo CM
    Anal Bioanal Chem; 2021 Dec; 413(30):7385-7399. PubMed ID: 34725712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. O-GlcNAc transferase invokes nucleotide sugar pyrophosphate participation in catalysis.
    Schimpl M; Zheng X; Borodkin VS; Blair DE; Ferenbach AT; Schüttelkopf AW; Navratilova I; Aristotelous T; Albarbarawi O; Robinson DA; Macnaughtan MA; van Aalten DM
    Nat Chem Biol; 2012 Dec; 8(12):969-74. PubMed ID: 23103942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional analysis of recombinant human and Yarrowia lipolytica O-GlcNAc transferases expressed in Saccharomyces cerevisiae.
    Oh HJ; Moon HY; Cheon SA; Hahn Y; Kang HA
    J Microbiol; 2016 Oct; 54(10):667-74. PubMed ID: 27687229
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of human O-GlcNAc transferase and its complex with a peptide substrate.
    Lazarus MB; Nam Y; Jiang J; Sliz P; Walker S
    Nature; 2011 Jan; 469(7331):564-7. PubMed ID: 21240259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The conserved threonine-rich region of the HCF-1
    Kapuria V; Röhrig UF; Waridel P; Lammers F; Borodkin VS; van Aalten DMF; Zoete V; Herr W
    J Biol Chem; 2018 Nov; 293(46):17754-17768. PubMed ID: 30224358
    [No Abstract]   [Full Text] [Related]  

  • 15. HCF-1 is cleaved in the active site of O-GlcNAc transferase.
    Lazarus MB; Jiang J; Kapuria V; Bhuiyan T; Janetzko J; Zandberg WF; Vocadlo DJ; Herr W; Walker S
    Science; 2013 Dec; 342(6163):1235-9. PubMed ID: 24311690
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Substrate and product analogues as human O-GlcNAc transferase inhibitors.
    Dorfmueller HC; Borodkin VS; Blair DE; Pathak S; Navratilova I; van Aalten DM
    Amino Acids; 2011 Mar; 40(3):781-92. PubMed ID: 20640461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study of the structural properties of sites modified by the O-linked 6-N-acetylglucosamine transferase.
    Britto-Borges T; Barton GJ
    PLoS One; 2017; 12(9):e0184405. PubMed ID: 28886091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual functionality of O-GlcNAc transferase is required for Drosophila development.
    Mariappa D; Zheng X; Schimpl M; Raimi O; Ferenbach AT; Müller HA; van Aalten DM
    Open Biol; 2015 Dec; 5(12):150234. PubMed ID: 26674417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A missense mutation in the catalytic domain of O-GlcNAc transferase links perturbations in protein O-GlcNAcylation to X-linked intellectual disability.
    Pravata VM; Gundogdu M; Bartual SG; Ferenbach AT; Stavridis M; Õunap K; Pajusalu S; Žordania R; Wojcik MH; van Aalten DMF
    FEBS Lett; 2020 Feb; 594(4):717-727. PubMed ID: 31627256
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Protein Substrates Engage the Lumen of O-GlcNAc Transferase's Tetratricopeptide Repeat Domain in Different Ways.
    Joiner CM; Hammel FA; Janetzko J; Walker S
    Biochemistry; 2021 Mar; 60(11):847-853. PubMed ID: 33709700
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.