These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 26238575)

  • 1. Boundary primacy in spatial mapping: Evidence from zebrafish (Danio rerio).
    Lee SA; Ferrari A; Vallortigara G; Sovrano VA
    Behav Processes; 2015 Oct; 119():116-22. PubMed ID: 26238575
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Independent effects of geometry and landmark in a spontaneous reorientation task: a study of two species of fish.
    Lee SA; Vallortigara G; Ruga V; Sovrano VA
    Anim Cogn; 2012 Sep; 15(5):861-70. PubMed ID: 22610461
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental Geometry Aligns the Hippocampal Map during Spatial Reorientation.
    Keinath AT; Julian JB; Epstein RA; Muzzio IA
    Curr Biol; 2017 Feb; 27(3):309-317. PubMed ID: 28089516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food and conspecific chemical cues modify visual behavior of zebrafish, Danio rerio.
    Stephenson JF; Partridge JC; Whitlock KE
    Zebrafish; 2012 Jun; 9(2):68-73. PubMed ID: 22489617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of local visual cues for spatial orientation in terrestrial toads (Rhinella arenarum): The role of distance to a goal.
    Daneri MF; Casanave EB; Muzio RN
    J Comp Psychol; 2015 Aug; 129(3):247-55. PubMed ID: 26147701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Environmental Geometry in Spatial Learning by Zebrafish (
    Baratti G; Potrich D; Sovrano VA
    Zebrafish; 2020 Apr; 17(2):131-138. PubMed ID: 32182193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial cognition in mice and rats: similarities and differences in brain and behavior.
    Hok V; Poucet B; Duvelle É; Save É; Sargolini F
    Wiley Interdiscip Rev Cogn Sci; 2016 Nov; 7(6):406-421. PubMed ID: 27582415
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wild rufous hummingbirds use local landmarks to return to rewarded locations.
    Pritchard DJ; Scott RD; Healy SD; Hurly AT
    Behav Processes; 2016 Jan; 122():59-66. PubMed ID: 26551275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facilitation of learning spatial relations among locations by visual cues: generality across spatial configurations.
    Sturz BR; Kelly DM; Brown MF
    Anim Cogn; 2010 Mar; 13(2):341-9. PubMed ID: 19777275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Associative learning in zebrafish (Danio rerio) in the plus maze.
    Sison M; Gerlai R
    Behav Brain Res; 2010 Feb; 207(1):99-104. PubMed ID: 19800919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cognitive maps and attention.
    Hardt O; Nadel L
    Prog Brain Res; 2009; 176():181-94. PubMed ID: 19733757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Neurocognitive Basis of Spatial Reorientation.
    Julian JB; Keinath AT; Marchette SA; Epstein RA
    Curr Biol; 2018 Sep; 28(17):R1059-R1073. PubMed ID: 30205055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growing in circles: rearing environment alters spatial navigation in fish.
    Brown AA; Spetch ML; Hurd PL
    Psychol Sci; 2007 Jul; 18(7):569-73. PubMed ID: 17614863
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of visual map complexity on the attentional processing of landmarks.
    Keil J; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2020; 15(3):e0229575. PubMed ID: 32119712
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of dentate gyrus in aligning internal spatial map to external landmark.
    Lee JW; Kim WR; Sun W; Jung MW
    Learn Mem; 2009 Sep; 16(9):530-6. PubMed ID: 19706836
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatial relational learning and memory abilities do not differ between men and women in a real-world, open-field environment.
    Banta Lavenex P; Lavenex P
    Behav Brain Res; 2010 Feb; 207(1):125-37. PubMed ID: 19800920
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Common mechanisms of spatial attention in memory and perception: a tactile dual-task study.
    Katus T; Andersen SK; Müller MM
    Cereb Cortex; 2014 Mar; 24(3):707-18. PubMed ID: 23172773
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Navigation by environmental geometry: the use of zebrafish as a model.
    Lee SA; Vallortigara G; Flore M; Spelke ES; Sovrano VA
    J Exp Biol; 2013 Oct; 216(Pt 19):3693-9. PubMed ID: 23788708
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cohesiveness of spatial and directional representations recorded from neural ensembles in the anterior thalamus, parasubiculum, medial entorhinal cortex, and hippocampus.
    Hargreaves EL; Yoganarasimha D; Knierim JJ
    Hippocampus; 2007; 17(9):826-41. PubMed ID: 17598156
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of landmarks and boundaries in the development of spatial memory.
    Bullens J; Nardini M; Doeller CF; Braddick O; Postma A; Burgess N
    Dev Sci; 2010 Jan; 13(1):170-80. PubMed ID: 20121873
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.