These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 262387)

  • 1. Network thermodynamic approach compartmental analysis. Na+ transients in frog skin.
    Mikulecky DC; Huf EG; Thomas SR
    Biophys J; 1979 Jan; 25(1):87-105. PubMed ID: 262387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A network thermodynamic two-port element to represent the coupled flow of salt and current. Improved alternative for the equivalent circuit.
    Mikulecky DC
    Biophys J; 1979 Feb; 25(2 Pt 1):323-39. PubMed ID: 262391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compartmental analysis of the Na+ flux ratio with application to data on frog skin epidermis.
    Huf EG; Mikulecky DC
    J Theor Biol; 1985 Jan; 112(1):193-220. PubMed ID: 3974263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation of sodium fluxes in frog skin epidermis.
    Huf EG; Howell JR
    J Membr Biol; 1974; 15(1):47-66. PubMed ID: 4837990
    [No Abstract]   [Full Text] [Related]  

  • 5. Compartmental aspects of Na+ saturation kinetics in frog skin.
    Huf EG; Howell JR
    Ann Biomed Eng; 1979; 7(1):73-94. PubMed ID: 575272
    [No Abstract]   [Full Text] [Related]  

  • 6. Computer simulation of Na wash-out kinetics in frog skin epidermis.
    Huf EG; Howell JR
    J Membr Biol; 1974; 15(1):87-106. PubMed ID: 4837992
    [No Abstract]   [Full Text] [Related]  

  • 7. [Representation of the active transport of sodium through isolated frog skin based on the thermodynamics of irreversible processes. II. Deduction of a relationship between transcutaneous potential and short-circuit current].
    Marro F; Pesente L
    Boll Soc Ital Biol Sper; 1964 Nov; 40(22):1443-6. PubMed ID: 5876871
    [No Abstract]   [Full Text] [Related]  

  • 8. Model studies on Na wash-out kinetics in frog skin epidermis.
    Howell JR; Huf EG
    Comput Biomed Res; 1974 Dec; 7(6):590-9. PubMed ID: 4457273
    [No Abstract]   [Full Text] [Related]  

  • 9. Computer simulation of the response of frog skin epidermis to changes in (Na plus)0.
    Huf EG; Howell JR
    J Membr Biol; 1974; 15(1):67-86. PubMed ID: 4837991
    [No Abstract]   [Full Text] [Related]  

  • 10. Energy consumption of active sodium transport in isolated frog skin.
    Sarkadi B; Schubert A
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(4):367-76. PubMed ID: 4546801
    [No Abstract]   [Full Text] [Related]  

  • 11. Exploration of apical sodium transport mechanisms in an epithelial model by network thermodynamic simulation of the effect of mucosal sodium depletion: I. Comparison of three different apical sodium permeability expressions.
    Mintz E; Thomas SR; Mikulecky DC
    J Theor Biol; 1986 Nov; 123(1):1-19. PubMed ID: 2442562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of uptake of sodium at the outer surface of the frog skin.
    Biber TU; Curran PF
    J Gen Physiol; 1970 Jul; 56(1):83-99. PubMed ID: 5514162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Description of the active transport of sodium through isolated frog skin based on the thermodynamics of irreversible processes. 3. Experimental control].
    Marro F; Pesente L; Gainotti M
    Boll Soc Ital Biol Sper; 1964 Dec; 40(23):1447-9. PubMed ID: 5878006
    [No Abstract]   [Full Text] [Related]  

  • 14. Numerical simulation of Na washout rates in whole frog skin.
    Howell JR; Huf EG
    Ann Biomed Eng; 1977 Jun; 5(2):194-207. PubMed ID: 883703
    [No Abstract]   [Full Text] [Related]  

  • 15. Chloride dependence of active sodium transport in frog skin: the role of intercellular spaces.
    Ferreira KT; Hill BS
    J Physiol; 1978 Oct; 283():283-305. PubMed ID: 102765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Description of the active transport of sodium through isolated frog skin based on the thermodynamics of irreversible processes. IV. Discussion of the significance and practical usefulness].
    Marro F; Pesente L
    Boll Soc Ital Biol Sper; 1964 Dec; 40(23):1449-52. PubMed ID: 5878007
    [No Abstract]   [Full Text] [Related]  

  • 17. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport.
    Erlij D; Smith MW
    J Physiol; 1973 Jan; 228(1):221-39. PubMed ID: 4539864
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nonsteady-state three compartment tracer kinetics. II. Sodium flux transients in the toad urinary bladder in response to short circuit.
    Schwartz TL; Snell FM
    Biophys J; 1968 Jul; 8(7):818-41. PubMed ID: 5699808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Site of action of a uremic serum fraction inhibiting sodium transport in frog skin.
    Flanigan WJ; Anderson DS; Stout K; Koike TI
    Nephron; 1978; 22(1-3):117-23. PubMed ID: 311442
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pH, Ca, ADH, and theophylline on kinetics of Na entry in frog skin.
    Mandel LJ
    Am J Physiol; 1978 Jul; 235(1):C35-48. PubMed ID: 27988
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.