These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 26238725)

  • 1. Current methods of epitope identification for cancer vaccine design.
    Cherryholmes GA; Stanton SE; Disis ML
    Vaccine; 2015 Dec; 33(51):7408-7414. PubMed ID: 26238725
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunoinformatics:
    Bahrami AA; Payandeh Z; Khalili S; Zakeri A; Bandehpour M
    Int Rev Immunol; 2019; 38(6):307-322. PubMed ID: 31478759
    [TBL] [Abstract][Full Text] [Related]  

  • 3. iVAX: An integrated toolkit for the selection and optimization of antigens and the design of epitope-driven vaccines.
    Moise L; Gutierrez A; Kibria F; Martin R; Tassone R; Liu R; Terry F; Martin B; De Groot AS
    Hum Vaccin Immunother; 2015; 11(9):2312-21. PubMed ID: 26155959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational tools for epitope vaccine design and evaluation.
    He L; Zhu J
    Curr Opin Virol; 2015 Apr; 11():103-12. PubMed ID: 25837467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction.
    Potocnakova L; Bhide M; Pulzova LB
    J Immunol Res; 2016; 2016():6760830. PubMed ID: 28127568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel multi-epitope peptide vaccine against cancer: an in silico approach.
    Nezafat N; Ghasemi Y; Javadi G; Khoshnoud MJ; Omidinia E
    J Theor Biol; 2014 May; 349():121-34. PubMed ID: 24512916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In Silico Prediction of Linear B-Cell Epitopes on Proteins.
    El-Manzalawy Y; Dobbs D; Honavar VG
    Methods Mol Biol; 2017; 1484():255-264. PubMed ID: 27787831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An overview of bioinformatics tools for epitope prediction: implications on vaccine development.
    Soria-Guerra RE; Nieto-Gomez R; Govea-Alonso DO; Rosales-Mendoza S
    J Biomed Inform; 2015 Feb; 53():405-14. PubMed ID: 25464113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of promiscuous HLA-II-restricted T cell epitopes with TEPITOPE.
    Bian H; Hammer J
    Methods; 2004 Dec; 34(4):468-75. PubMed ID: 15542373
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing an efficient multi-epitope oral vaccine against Helicobacter pylori using immunoinformatics and structural vaccinology approaches.
    Nezafat N; Eslami M; Negahdaripour M; Rahbar MR; Ghasemi Y
    Mol Biosyst; 2017 Mar; 13(4):699-713. PubMed ID: 28194462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design.
    Kazi A; Chuah C; Majeed ABA; Leow CH; Lim BH; Leow CY
    Pathog Glob Health; 2018 May; 112(3):123-131. PubMed ID: 29528265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico analyses of Wilms׳ tumor protein to designing a novel multi-epitope DNA vaccine against cancer.
    Khalili S; Rahbar MR; Dezfulian MH; Jahangiri A
    J Theor Biol; 2015 Aug; 379():66-78. PubMed ID: 25936349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping T and B cell epitopes in sperm protein 17 to support the development of an ovarian cancer vaccine.
    Xiang SD; Gao Q; Wilson KL; Heyerick A; Plebanski M
    Vaccine; 2015 Nov; 33(44):5950-9. PubMed ID: 26263201
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of multiple antigen epitopes.
    Viswanathan R; Carroll M; Roffe A; Fajardo JE; Fiser A
    Bioinformatics; 2024 Oct; 40(10):. PubMed ID: 39271143
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines.
    Bui HH; Sidney J; Li W; Fusseder N; Sette A
    BMC Bioinformatics; 2007 Sep; 8():361. PubMed ID: 17897458
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of bioinformatics for identifying class II-restricted T-cell epitopes.
    Bian H; Reidhaar-Olson JF; Hammer J
    Methods; 2003 Mar; 29(3):299-309. PubMed ID: 12725795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In silico analysis of MHC-I restricted epitopes of Chikungunya virus proteins: Implication in understanding anti-CHIKV CD8(+) T cell response and advancement of epitope based immunotherapy for CHIKV infection.
    Pratheek BM; Suryawanshi AR; Chattopadhyay S; Chattopadhyay S
    Infect Genet Evol; 2015 Apr; 31():118-26. PubMed ID: 25643869
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of linear B-cell epitopes of hepatitis C virus for vaccine development.
    Huang WL; Tsai MJ; Hsu KT; Wang JR; Chen YH; Ho SY
    BMC Med Genomics; 2015; 8 Suppl 4(Suppl 4):S3. PubMed ID: 26680271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of linear B-cell epitopes.
    Reimer U
    Methods Mol Biol; 2009; 524():335-44. PubMed ID: 19377956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational antigenic epitope prediction by calculating electrostatic desolvation penalties of protein surfaces.
    Fiorucci S; Zacharias M
    Methods Mol Biol; 2014; 1184():365-74. PubMed ID: 25048135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.