These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 26239072)
21. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates. Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862 [TBL] [Abstract][Full Text] [Related]
22. Landfill leachate treatment with microbial fuel cells; scale-up through plurality. Gálvez A; Greenman J; Ieropoulos I Bioresour Technol; 2009 Nov; 100(21):5085-91. PubMed ID: 19559605 [TBL] [Abstract][Full Text] [Related]
23. Sustainable landfill leachate treatment using refuse and pine bark as a carbon source for bio-denitrification. Frank RR; Trois C; Coulon F Environ Technol; 2015; 36(9-12):1347-58. PubMed ID: 25490954 [TBL] [Abstract][Full Text] [Related]
24. Acidogenic fermentation of municipal solid waste and its application to bio-electricity production via microbial fuel cells (MfCs). Cavdar P; Yilmaz E; Tugtas AE; Calli B Water Sci Technol; 2011; 64(4):789-95. PubMed ID: 22097062 [TBL] [Abstract][Full Text] [Related]
25. Enhancing biogas production from anaerobic biodegradation of the organic fraction of municipal solid waste through leachate blending and recirculation. Nair A; Sartaj M; Kennedy K; Coelho NM Waste Manag Res; 2014 Oct; 32(10):939-46. PubMed ID: 25125510 [TBL] [Abstract][Full Text] [Related]
26. Synchronous bio-degradation and bio-electricity generation in a Microbial Fuel Cell with aged and fresh leachate from the identical subtropical area. Cheng P; Shan R; Yuan HR; Tan X; Chen Y; Wu J J Environ Manage; 2022 Aug; 316():115017. PubMed ID: 35598448 [TBL] [Abstract][Full Text] [Related]
27. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation. Choi J; Ahn Y Bioresour Technol; 2015 May; 183():53-60. PubMed ID: 25723127 [TBL] [Abstract][Full Text] [Related]
28. Resource recovery from landfill leachate using bioelectrochemical systems: Opportunities, challenges, and perspectives. Iskander SM; Brazil B; Novak JT; He Z Bioresour Technol; 2016 Feb; 201():347-54. PubMed ID: 26681364 [TBL] [Abstract][Full Text] [Related]
29. Electricity generation from carbon monoxide and syngas in a microbial fuel cell. Hussain A; Guiot SR; Mehta P; Raghavan V; Tartakovsky B Appl Microbiol Biotechnol; 2011 May; 90(3):827-36. PubMed ID: 21400198 [TBL] [Abstract][Full Text] [Related]
30. Electricity generation from food wastes and microbial community structure in microbial fuel cells. Jia J; Tang Y; Liu B; Wu D; Ren N; Xing D Bioresour Technol; 2013 Sep; 144():94-9. PubMed ID: 23859985 [TBL] [Abstract][Full Text] [Related]
31. Electricity generation from young landfill leachate in a microbial fuel cell with a new electrode material. Özkaya B; Cetinkaya AY; Cakmakci M; Karadağ D; Sahinkaya E Bioprocess Biosyst Eng; 2013 Apr; 36(4):399-405. PubMed ID: 22903571 [TBL] [Abstract][Full Text] [Related]
32. Electricity generation from mixed volatile fatty acids using microbial fuel cells. Teng SX; Tong ZH; Li WW; Wang SG; Sheng GP; Shi XY; Liu XW; Yu HQ Appl Microbiol Biotechnol; 2010 Aug; 87(6):2365-72. PubMed ID: 20607228 [TBL] [Abstract][Full Text] [Related]
33. Physico-chemical and biological treatment of MSW landfill leachate. Castrillón L; Fernández-Nava Y; Ulmanu M; Anger I; Marañón E Waste Manag; 2010 Feb; 30(2):228-35. PubMed ID: 19857951 [TBL] [Abstract][Full Text] [Related]
34. Microbial fuel cells for simultaneous carbon and nitrogen removal. Virdis B; Rabaey K; Yuan Z; Keller J Water Res; 2008 Jun; 42(12):3013-24. PubMed ID: 18466949 [TBL] [Abstract][Full Text] [Related]
35. Treating landfill leachate using passive aeration trickling filters; effects of leachate characteristics and temperature on rates and process dynamics. Matthews R; Winson M; Scullion J Sci Total Environ; 2009 Apr; 407(8):2557-64. PubMed ID: 19217644 [TBL] [Abstract][Full Text] [Related]
36. Acceleration of aged-landfill stabilization by combining partial nitrification and leachate recirculation: a field-scale study. Chung J; Kim S; Baek S; Lee NH; Park S; Lee J; Lee H; Bae W J Hazard Mater; 2015 Mar; 285():436-44. PubMed ID: 25531070 [TBL] [Abstract][Full Text] [Related]
37. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells. Juang DF; Yang PC; Chou HY; Chiu LJ Biotechnol Lett; 2011 Nov; 33(11):2147-60. PubMed ID: 21750995 [TBL] [Abstract][Full Text] [Related]
38. Utilization of microbial fuel cells as a dual approach for landfill leachate treatment and power production: a review. Ishaq A; Said MIM; Azman SB; Dandajeh AA; Lemar GS; Jagun ZT Environ Sci Pollut Res Int; 2024 Jun; 31(29):41683-41733. PubMed ID: 38012494 [TBL] [Abstract][Full Text] [Related]
39. Chemical characterization of emissions from a municipal solid waste treatment plant. Moreno AI; Arnáiz N; Font R; Carratalá A Waste Manag; 2014 Nov; 34(11):2393-9. PubMed ID: 25106121 [TBL] [Abstract][Full Text] [Related]
40. Nitrogen removal from landfill leachate via ex situ nitrification and sequential in situ denitrification. Zhong Q; Li D; Tao Y; Wang X; He X; Zhang J; Zhang J; Guo W; Wang L Waste Manag; 2009 Apr; 29(4):1347-53. PubMed ID: 19087900 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]