These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 26239072)

  • 41. Integrated function of microbial fuel cell (MFC) as bio-electrochemical treatment system associated with bioelectricity generation under higher substrate load.
    Mohan SV; Raghavulu SV; Peri D; Sarma PN
    Biosens Bioelectron; 2009 Mar; 24(7):2021-7. PubMed ID: 19058958
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Enhanced treatment of landfill leachate with cathodic algal biofilm and oxygen-consuming unit in a hybrid microbial fuel cell system.
    Elmaadawy K; Hu J; Guo S; Hou H; Xu J; Wang D; Liang T; Yang J; Liang S; Xiao K; Liu B
    Bioresour Technol; 2020 Aug; 310():123420. PubMed ID: 32339889
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Autotrophic denitrification in microbial fuel cells treating low ionic strength waters.
    Puig S; Coma M; Desloover J; Boon N; Colprim J; Balaguer MD
    Environ Sci Technol; 2012 Feb; 46(4):2309-15. PubMed ID: 22257136
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Use of aged refuse-based bioreactor/biofilter for landfill leachate treatment.
    Hassan M; Xie B
    Appl Microbiol Biotechnol; 2014 Aug; 98(15):6543-53. PubMed ID: 24878749
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Microbial fuel cells in power generation and extended applications.
    Li WW; Sheng GP
    Adv Biochem Eng Biotechnol; 2012; 128():165-97. PubMed ID: 22252385
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Microbial fuel cells: the effects of configurations, electrolyte solutions, and electrode materials on power generation.
    Li F; Sharma Y; Lei Y; Li B; Zhou Q
    Appl Biochem Biotechnol; 2010 Jan; 160(1):168-81. PubMed ID: 19172235
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell.
    Mahmoud M; Parameswaran P; Torres CI; Rittmann BE
    Bioresour Technol; 2014 Jan; 151():151-8. PubMed ID: 24231265
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An anaerobic dynamic membrane bioreactor (AnDMBR) for landfill leachate treatment: performance and microbial community identification.
    Xie Z; Wang Z; Wang Q; Zhu C; Wu Z
    Bioresour Technol; 2014 Jun; 161():29-39. PubMed ID: 24681530
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Conversion of residual organics in corn stover-derived biorefinery stream to bioenergy via a microbial fuel cell.
    Borole AP; Hamilton CY; Schell DJ
    Environ Sci Technol; 2013 Jan; 47(1):642-8. PubMed ID: 23194288
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Simultaneous phenol removal, nitrification and denitrification using microbial fuel cell technology.
    Feng C; Huang L; Yu H; Yi X; Wei C
    Water Res; 2015 Jun; 76():160-70. PubMed ID: 25813490
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Fungal and enzymatic treatment of mature municipal landfill leachate.
    Kalčíková G; Babič J; Pavko A; Gotvajn AŽ
    Waste Manag; 2014 Apr; 34(4):798-803. PubMed ID: 24462339
    [TBL] [Abstract][Full Text] [Related]  

  • 52. All ecosystems potentially host electrogenic bacteria.
    Chabert N; Amin Ali O; Achouak W
    Bioelectrochemistry; 2015 Dec; 106(Pt A):88-96. PubMed ID: 26298511
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phylogenetic and metagenomic analyses of substrate-dependent bacterial temporal dynamics in microbial fuel cells.
    Zhang H; Chen X; Braithwaite D; He Z
    PLoS One; 2014; 9(9):e107460. PubMed ID: 25202990
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy.
    Du Z; Li H; Gu T
    Biotechnol Adv; 2007; 25(5):464-82. PubMed ID: 17582720
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of sulphate addition and sulphide inhibition on microbial fuel cells.
    Ieropoulos I; Gálvez A; Greenman J
    Enzyme Microb Technol; 2013 Jan; 52(1):32-7. PubMed ID: 23199736
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Evaluation of hydrolysis and fermentation rates in microbial fuel cells.
    Velasquez-Orta SB; Yu E; Katuri KP; Head IM; Curtis TP; Scott K
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):789-98. PubMed ID: 21347728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes.
    Bilgili MS; Demir A; Ozkaya B
    J Hazard Mater; 2007 May; 143(1-2):177-83. PubMed ID: 17023112
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measuring organic carbon, nutrients and heavy metals in rivers receiving leachate from controlled and uncontrolled municipal solid waste (MSW) landfills.
    Yusof N; Haraguchi A; Hassan MA; Othman MR; Wakisaka M; Shirai Y
    Waste Manag; 2009 Oct; 29(10):2666-80. PubMed ID: 19564103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. [Application of microbial fuel cell (MFC) in solid waste composting].
    Cui J; Wang X; Tang J
    Sheng Wu Gong Cheng Xue Bao; 2012 Mar; 28(3):295-304. PubMed ID: 22712388
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Microbial fuel cells: novel biotechnology for energy generation.
    Rabaey K; Verstraete W
    Trends Biotechnol; 2005 Jun; 23(6):291-8. PubMed ID: 15922081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.