These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 26239286)

  • 1. Epitaxial diamond-hexagonal silicon nano-ribbon growth on (001) silicon.
    Qiu Y; Bender H; Richard O; Kim MS; Van Besien E; Vos I; de Potter de ten Broeck M; Mocuta D; Vandervorst W
    Sci Rep; 2015 Aug; 5():12692. PubMed ID: 26239286
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct-bandgap emission from hexagonal Ge and SiGe alloys.
    Fadaly EMT; Dijkstra A; Suckert JR; Ziss D; van Tilburg MAJ; Mao C; Ren Y; van Lange VT; Korzun K; Kölling S; Verheijen MA; Busse D; Rödl C; Furthmüller J; Bechstedt F; Stangl J; Finley JJ; Botti S; Haverkort JEM; Bakkers EPAM
    Nature; 2020 Apr; 580(7802):205-209. PubMed ID: 32269353
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conversion of silicon carbide to crystalline diamond-structured carbon at ambient pressure.
    Gogotsi Y; Welz S; Ersoy DA; McNallan MJ
    Nature; 2001 May; 411(6835):283-7. PubMed ID: 11357125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nature of Hexagonal Silicon Forming via High-Pressure Synthesis: Nanostructured Hexagonal 4H Polytype.
    Pandolfi S; Renero-Lecuna C; Le Godec Y; Baptiste B; Menguy N; Lazzeri M; Gervais C; Spektor K; Crichton WA; Kurakevych OO
    Nano Lett; 2018 Sep; 18(9):5989-5995. PubMed ID: 30102550
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epitaxial growth of a low-density framework form of crystalline silicon: a molecular-dynamics study.
    Munetoh S; Moriguchi K; Kamei K; Shintani A; Motooka T
    Phys Rev Lett; 2001 May; 86(21):4879-82. PubMed ID: 11384371
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure and optical properties of Si, Ge and diamond in the lonsdaleite phase.
    De A; Pryor CE
    J Phys Condens Matter; 2014 Jan; 26(4):045801. PubMed ID: 24592487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards direct-gap silicon phases by the inverse band structure design approach.
    Xiang HJ; Huang B; Kan E; Wei SH; Gong XG
    Phys Rev Lett; 2013 Mar; 110(11):118702. PubMed ID: 25166584
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexagonal-Ge Nanostructures with Direct-Bandgap Emissions in a Si-Based Light-Emitting Metasurface.
    Zhang N; Yan J; Wang L; Zhang J; Zhang Z; Miao T; Zheng C; Jiang Z; Hu H; Zhong Z
    ACS Nano; 2024 Jan; 18(1):328-336. PubMed ID: 38147566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Epitaxy of cubic boron nitride on (001)-oriented diamond.
    Zhang XW; Boyen HG; Deyneka N; Ziemann P; Banhart F; Schreck M
    Nat Mater; 2003 May; 2(5):312-5. PubMed ID: 12692532
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diamond FinFET without Hydrogen Termination.
    Huang B; Bai X; Lam SK; Tsang KK
    Sci Rep; 2018 Feb; 8(1):3063. PubMed ID: 29449602
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Preferential Positioning, Stability, and Segregation of Dopants in Hexagonal Si Nanowires.
    Amato M; Ossicini S; Canadell E; Rurali R
    Nano Lett; 2019 Feb; 19(2):866-876. PubMed ID: 30608707
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricating nano ribbons and nano fibers of semiconductor materials by diamond turning.
    Yan J; Gai X; Kuriyagawa T
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1423-7. PubMed ID: 19441538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Six novel carbon and silicon allotropes with their potential application in photovoltaic field.
    Zhang W; Chai C; Fan Q; Song Y; Yang Y
    J Phys Condens Matter; 2020 May; 32(35):. PubMed ID: 32294638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preferentially grown ultranano c-diamond and n-diamond grains on silicon nanoneedles from energetic species with enhanced field-emission properties.
    Thomas JP; Chen HC; Tseng SH; Wu HC; Lee CY; Cheng HF; Tai NH; Lin IN
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5103-8. PubMed ID: 23016635
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two dimensional monolayer rhombic silicene on the diamond (111) surface.
    Xu R; Gao N; Li H; Qiu D; Wang Q; Cheng S
    Phys Chem Chem Phys; 2018 Aug; 20(33):21699-21704. PubMed ID: 30101234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal Phase Effects in Si Nanowire Polytypes and Their Homojunctions.
    Amato M; Kaewmaraya T; Zobelli A; Palummo M; Rurali R
    Nano Lett; 2016 Sep; 16(9):5694-700. PubMed ID: 27530077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-Crystalline Hexagonal Silicon-Germanium.
    Hauge HI; Conesa-Boj S; Verheijen MA; Koelling S; Bakkers EP
    Nano Lett; 2017 Jan; 17(1):85-90. PubMed ID: 28001429
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis of silicon doped SrMO3 (M = Mn, Co): stabilization of the cubic perovskite and enhancement in conductivity.
    Hancock CA; Slater PR
    Dalton Trans; 2011 May; 40(20):5599-603. PubMed ID: 21491046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modified phases of diamond formed under shock compression and rapid quenching.
    Hirai H; Kondo K
    Science; 1991 Aug; 253(5021):772-4. PubMed ID: 17835494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A quenchable superhard carbon phase synthesized by cold compression of carbon nanotubes.
    Wang Z; Zhao Y; Tait K; Liao X; Schiferl D; Zha C; Downs RT; Qian J; Zhu Y; Shen T
    Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13699-702. PubMed ID: 15361581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.