These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 26239700)
1. Possibilities of retention prediction in fast gradient liquid chromatography. Part 3: Short silica monolithic columns. Jandera P; Hájek T J Chromatogr A; 2015 Sep; 1410():76-89. PubMed ID: 26239700 [TBL] [Abstract][Full Text] [Related]
2. Automated dual two-dimensional liquid chromatography approach for fast acquisition of three-dimensional data using combinations of zwitterionic polymethacrylate and silica-based monolithic columns. Hájek T; Jandera P; Staňková M; Česla P J Chromatogr A; 2016 May; 1446():91-102. PubMed ID: 27083260 [TBL] [Abstract][Full Text] [Related]
3. Impact of pore structural parameters on column performance and resolution of reversed-phase monolithic silica columns for peptides and proteins. Skudas R; Grimes BA; Machtejevas E; Kudirkaite V; Kornysova O; Hennessy TP; Lubda D; Unger KK J Chromatogr A; 2007 Mar; 1144(1):72-84. PubMed ID: 17084406 [TBL] [Abstract][Full Text] [Related]
4. Retention and bandwidths prediction in fast gradient liquid chromatography. Part 2-Core-shell columns. Jandera P; Hájek T; Vyňuchalová K J Chromatogr A; 2014 Apr; 1337():57-66. PubMed ID: 24636562 [TBL] [Abstract][Full Text] [Related]
5. Possibilities of retention prediction in fast gradient liquid chromatography. Part 1: Comparison of separation on packed fully porous, nonporous and monolithic columns. Vyňuchalová K; Jandera P J Chromatogr A; 2013 Feb; 1278():37-45. PubMed ID: 23336942 [TBL] [Abstract][Full Text] [Related]
6. Band broadening in fast gradient high-performance liquid chromatography: application to the second generation of 4.6 mm I.D. silica monolithic columns. Gritti F; Guiochon G J Chromatogr A; 2012 May; 1238():77-90. PubMed ID: 22503619 [TBL] [Abstract][Full Text] [Related]
8. Monolithic stationary phases with incorporated fumed silica nanoparticles. Part II. Polymethacrylate-based monolithic column with "covalently" incorporated modified octadecyl fumed silica nanoparticles for reversed-phase chromatography. Aydoğan C; El Rassi Z J Chromatogr A; 2016 May; 1445():62-7. PubMed ID: 27059396 [TBL] [Abstract][Full Text] [Related]
9. Zwitterionic silica-based monolithic capillary columns for isocratic and gradient hydrophilic interaction liquid chromatography. Moravcová D; Planeta J; Kahle V; Roth M J Chromatogr A; 2012 Dec; 1270():178-85. PubMed ID: 23201004 [TBL] [Abstract][Full Text] [Related]
10. Effects of the gradient profile, sample volume and solvent on the separation in very fast gradients, with special attention to the second-dimension gradient in comprehensive two-dimensional liquid chromatography. Jandera P; Hájek T; Cesla P J Chromatogr A; 2011 Apr; 1218(15):1995-2006. PubMed ID: 21081232 [TBL] [Abstract][Full Text] [Related]
12. Hydrosilated silica-based columns: the effects of mobile phase and temperature on dual hydrophilic-reversed-phase separation mechanism of phenolic acids. Soukup J; Jandera P J Chromatogr A; 2012 Mar; 1228():125-34. PubMed ID: 21782183 [TBL] [Abstract][Full Text] [Related]
13. Comparison of the gradient kinetic performance of silica monolithic capillary columns with columns packed with 3 μm porous and 2.7 μm fused-core silica particles. Vaast A; Broeckhoven K; Dolman S; Desmet G; Eeltink S J Chromatogr A; 2012 Mar; 1228():270-5. PubMed ID: 21855077 [TBL] [Abstract][Full Text] [Related]
15. System maps for retention of neutral organic compounds under isocratic conditions on a reversed-phase monolithic column. Chu Y; Poole CF J Chromatogr A; 2003 Jun; 1003(1-2):113-21. PubMed ID: 12899300 [TBL] [Abstract][Full Text] [Related]
16. A study of the re-equilibration of hydrophilic interaction columns with a focus on viability for use in two-dimensional liquid chromatography. Seidl C; Bell DS; Stoll DR J Chromatogr A; 2019 Oct; 1604():460484. PubMed ID: 31488293 [TBL] [Abstract][Full Text] [Related]
17. Selectivity comparisons of monolithic silica capillary columns modified with poly(octadecyl methacrylate) and octadecyl moieties for halogenated compounds in reversed-phase liquid chromatography. Soonthorntantikul W; Leepipatpiboon N; Ikegami T; Tanaka N; Nhujak T J Chromatogr A; 2009 Jul; 1216(31):5868-74. PubMed ID: 19560150 [TBL] [Abstract][Full Text] [Related]
18. Mobile phase effects in reversed-phase and hydrophilic interaction liquid chromatography revisited. Jandera P; Hájek T; Šromová Z J Chromatogr A; 2018 Mar; 1543():48-57. PubMed ID: 29486886 [TBL] [Abstract][Full Text] [Related]
19. Gradient-elution parameters in capillary liquid chromatography for high-speed separations of peptides and intact proteins. Vaast A; Tyteca E; Desmet G; Schoenmakers PJ; Eeltink S J Chromatogr A; 2014 Aug; 1355():149-57. PubMed ID: 24986072 [TBL] [Abstract][Full Text] [Related]
20. Cholesterol-based polymeric monolithic columns for capillary liquid chromatography. Part II. Grzywiński D; Szumski M; Buszewski B J Chromatogr A; 2015 Aug; 1408():145-50. PubMed ID: 26187765 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]