BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 26239756)

  • 1. Configurational salience of landmarks: an analysis of sketch maps using Space Syntax.
    von Stülpnagel R; Frankenstein J
    Cogn Process; 2015 Sep; 16 Suppl 1():437-41. PubMed ID: 26239756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Landmarks in nature to support wayfinding: the effects of seasons and experimental methods.
    Kettunen P; Irvankoski K; Krause CM; Sarjakoski LT
    Cogn Process; 2013 Aug; 14(3):245-53. PubMed ID: 23392783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Turn left where you felt unhappy: how affect influences landmark-based wayfinding.
    Balaban CZ; Karimpur H; Röser F; Hamburger K
    Cogn Process; 2017 May; 18(2):135-144. PubMed ID: 28070686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gardony Map Drawing Analyzer: Software for quantitative analysis of sketch maps.
    Gardony AL; Taylor HA; Brunyé TT
    Behav Res Methods; 2016 Mar; 48(1):151-77. PubMed ID: 25673320
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Navigation and acquisition of spatial knowledge in a virtual maze.
    Gillner S; Mallot HA
    J Cogn Neurosci; 1998 Jul; 10(4):445-63. PubMed ID: 9712675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geographical slant facilitates navigation and orientation in virtual environments.
    Restat JD; Steck SD; Mochnatzki HF; Mallot HA
    Perception; 2004; 33(6):667-87. PubMed ID: 15330364
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Route memory in an unfamiliar homogeneous environment: a comparison of two strategies.
    Sameer A; Bhushan B
    Cogn Process; 2015 Sep; 16 Suppl 1():149-52. PubMed ID: 26224259
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of visual map complexity on the attentional processing of landmarks.
    Keil J; Edler D; Kuchinke L; Dickmann F
    PLoS One; 2020; 15(3):e0229575. PubMed ID: 32119712
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gender differences in landmark learning for virtual navigation: the role of distance to a goal.
    Chamizo VD; Artigas AA; Sansa J; Banterla F
    Behav Processes; 2011 Sep; 88(1):20-6. PubMed ID: 21736927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environment learning from virtual exploration in individuals with down syndrome: the role of perspective and sketch maps.
    Toffalini E; Meneghetti C; Carretti B; Lanfranchi S
    J Intellect Disabil Res; 2018 Jan; 62(1):30-40. PubMed ID: 29124810
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Considering spatial ability in virtual route learning in early aging.
    Gyselinck V; Meneghetti C; Bormetti M; Orriols E; Piolino P; De Beni R
    Cogn Process; 2013 Aug; 14(3):309-16. PubMed ID: 23536003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Eye tracking, strategies, and sex differences in virtual navigation.
    Andersen NE; Dahmani L; Konishi K; Bohbot VD
    Neurobiol Learn Mem; 2012 Jan; 97(1):81-9. PubMed ID: 22001012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Age and gender differences in various topographical orientation strategies.
    Liu I; Levy RM; Barton JJ; Iaria G
    Brain Res; 2011 Sep; 1410():112-9. PubMed ID: 21803342
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Retrosplenial cortex codes for permanent landmarks.
    Auger SD; Mullally SL; Maguire EA
    PLoS One; 2012; 7(8):e43620. PubMed ID: 22912894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial knowledge acquisition in younger and elderly adults: a study in a virtual environment.
    Jansen P; Schmelter A; Heil M
    Exp Psychol; 2010; 57(1):54-60. PubMed ID: 20178963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One spatial map or many? Spatial coding of connected environments.
    Han X; Becker S
    J Exp Psychol Learn Mem Cogn; 2014 Mar; 40(2):511-531. PubMed ID: 24364723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Giessen virtual environment laboratory: human wayfinding and landmark salience.
    Röser F; Hamburger K; Knauff M
    Cogn Process; 2011 May; 12(2):209-14. PubMed ID: 21279666
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wormholes in virtual space: From cognitive maps to cognitive graphs.
    Warren WH; Rothman DB; Schnapp BH; Ericson JD
    Cognition; 2017 Sep; 166():152-163. PubMed ID: 28577445
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial radial maze procedures and setups to dissociate local and distal relational spatial frameworks in humans.
    Bertholet L; Escobar MT; Depré M; Chavan CF; Giuliani F; Gisquet-Verrier P; Preissmann D; Schenk F
    J Neurosci Methods; 2015 Sep; 253():126-41. PubMed ID: 26096715
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Training, transfer, and retention of three-dimensional spatial memory in virtual environments.
    Richards JT; Oman CM; Shebilske WL; Beall AC; Liu A; Natapoff A
    J Vestib Res; 2002-2003; 12(5-6):223-38. PubMed ID: 14501100
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.