These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 26239794)

  • 1. Correction: Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Sep; 7(33):14121. PubMed ID: 26239794
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron-doping-enhanced photoelectrochemical water splitting performance of nanostructured WO3: a combined experimental and theoretical study.
    Zhang T; Zhu Z; Chen H; Bai Y; Xiao S; Zheng X; Xue Q; Yang S
    Nanoscale; 2015 Feb; 7(7):2933-40. PubMed ID: 25587830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A significant cathodic shift in the onset potential and enhanced photoelectrochemical water splitting using Au nanoparticles decorated WO3 nanorod array.
    Xu F; Yao Y; Bai D; Xu R; Mei J; Wu D; Gao Z; Jiang K
    J Colloid Interface Sci; 2015 Nov; 458():194-9. PubMed ID: 26218199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting.
    Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T
    Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanostructure-based WO3 photoanodes for photoelectrochemical water splitting.
    Liu X; Wang F; Wang Q
    Phys Chem Chem Phys; 2012 Jun; 14(22):7894-911. PubMed ID: 22534756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment.
    Reyes-Gil KR; Robinson DB
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12400-10. PubMed ID: 24195676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lattice defect-enhanced hydrogen production in nanostructured hematite-based photoelectrochemical device.
    Wang P; Wang D; Lin J; Li X; Peng C; Gao X; Huang Q; Wang J; Xu H; Fan C
    ACS Appl Mater Interfaces; 2012 Apr; 4(4):2295-302. PubMed ID: 22452535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanostructured tungsten trioxide thin films synthesized for photoelectrocatalytic water oxidation: a review.
    Zhu T; Chong MN; Chan ES
    ChemSusChem; 2014 Nov; 7(11):2974-97. PubMed ID: 25274424
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of annealing temperature of WO3 in photoelectrochemical conversion and energy storage for water splitting.
    Ng C; Ng YH; Iwase A; Amal R
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5269-75. PubMed ID: 23731030
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform Doping of Titanium in Hematite Nanorods for Efficient Photoelectrochemical Water Splitting.
    Wang D; Chen H; Chang G; Lin X; Zhang Y; Aldalbahi A; Peng C; Wang J; Fan C
    ACS Appl Mater Interfaces; 2015 Jul; 7(25):14072-8. PubMed ID: 26052922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Correction: Direct Z scheme-fashioned photoanode systems consisting of Fe
    Liao A; Zhou Y; Xiao L; Zhang C; Wu C; Asiri AM; Xiao M; Zou Z
    Nanoscale; 2019 Jan; 11(3):1451. PubMed ID: 30604819
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electron collection in host-guest nanostructured hematite photoanodes for water splitting: the influence of scaffold doping density.
    Kondofersky I; Dunn HK; Müller A; Mandlmeier B; Feckl JM; Fattakhova-Rohlfing D; Scheu C; Peter LM; Bein T
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):4623-30. PubMed ID: 25562687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoanodes based on nanostructured WO3 for water splitting.
    Tacca A; Meda L; Marra G; Savoini A; Caramori S; Cristino V; Bignozzi CA; Gonzalez Pedro V; Boix PP; Gimenez S; Bisquert J
    Chemphyschem; 2012 Aug; 13(12):3025-34. PubMed ID: 22532437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anchoring a molecular iron catalyst to solar-responsive WO3 improves the rate and selectivity of photoelectrochemical water oxidation.
    Klepser BM; Bartlett BM
    J Am Chem Soc; 2014 Feb; 136(5):1694-7. PubMed ID: 24437445
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Optically Transparent Iron Nickel Oxide Catalyst for Solar Water Splitting.
    Morales-Guio CG; Mayer MT; Yella A; Tilley SD; Grätzel M; Hu X
    J Am Chem Soc; 2015 Aug; 137(31):9927-36. PubMed ID: 26200221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced water splitting at thin film tungsten trioxide photoanodes bearing plasmonic gold-polyoxometalate particles.
    Solarska R; Bienkowski K; Zoladek S; Majcher A; Stefaniuk T; Kulesza PJ; Augustynski J
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14196-200. PubMed ID: 25332175
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoelectrochemical water oxidation on photoanodes fabricated with hexagonal nanoflower and nanoblock WO3.
    Wang N; Wang D; Li M; Shi J; Li C
    Nanoscale; 2014 Feb; 6(4):2061-6. PubMed ID: 24384843
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-biasing photoelectrochemical cell for spontaneous overall water splitting under visible-light illumination.
    Chen Q; Li J; Li X; Huang K; Zhou B; Shangguan W
    ChemSusChem; 2013 Jul; 6(7):1276-81. PubMed ID: 23775929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoelectrochemical cells with tungsten trioxide/Mo-doped BiVO4 bilayers.
    Zhang K; Shi XJ; Kim JK; Park JH
    Phys Chem Chem Phys; 2012 Aug; 14(31):11119-24. PubMed ID: 22772604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.