BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 262398)

  • 1. Resonance enhanced Raman spectrum of all-trans anhydrovitamin A.
    Auerbach RA; Granville MF; Kohler BE
    Biophys J; 1979 Mar; 25(3):443-54. PubMed ID: 262398
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular flow resonance Raman effect from retinal and rhodopsin.
    Callender RH; Doukas A; Crouch R; Nakanishi K
    Biochemistry; 1976 Apr; 15(8):1621-9. PubMed ID: 1268187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Resonance Raman studies of visual pigments.
    Callender R
    Annu Rev Biophys Bioeng; 1977; 6():33-55. PubMed ID: 326149
    [No Abstract]   [Full Text] [Related]  

  • 4. A proton and carbon-13 nuclear magnetic resonance spectroscopy study of the conformation of a protonated 11-cis-retinal Schiff base.
    Shriver JW; Mateescu GD; Abrahamson EW
    Biochemistry; 1979 Oct; 18(22):4785-92. PubMed ID: 508717
    [No Abstract]   [Full Text] [Related]  

  • 5. Time-resolved resonance Raman characterization of the bL550 intermediate and the two dark-adapted bRDA/560 forms of bacteriorhodopsin.
    Terner J; Hsieh CL; El-Sayed MA
    Biophys J; 1979 Jun; 26(3):527-41. PubMed ID: 262430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance Raman studies of the conformation of retinal in rhodopsin and isorhodopsin.
    Mathies R; Freedman TB; Stryer L
    J Mol Biol; 1977 Jan; 109(2):367-72. PubMed ID: 839546
    [No Abstract]   [Full Text] [Related]  

  • 7. Analysis of the infrared and Raman spectra of the symmetrically substituted 1,3-diphenylurea and 1,3-diphenylacetone (dibenzyl ketone).
    Badawi HM; Förner W
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Sep; 95():435-41. PubMed ID: 22580138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fourier transform infrared/Raman differentiation and characterization of cis- and trans-2,5-dimethoxy-4,beta-dimethyl-beta-nitrostyrenes: precursors to the street drug STP.
    By A; Neville GA; Shurvell HF
    J Forensic Sci; 1992 Mar; 37(2):503-12. PubMed ID: 1500895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman study of the primary photochemistry of visual pigments. Hypsorhodopsin.
    Pande AJ; Callender RH; Ebrey TG; Tsuda M
    Biophys J; 1984 Mar; 45(3):573-6. PubMed ID: 6713069
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Investigation of the effects of dehydration on bacterial rhodopsin by laser resonance Raman spectroscopy].
    Terpugov EL; Chekulaeva LN; Lazarev IuA
    Mol Biol (Mosk); 1982; 16(4):814-20. PubMed ID: 7121464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chromophore-anion interactions in halorhodopsin from Natronobacterium pharaonis probed by time-resolved resonance Raman spectroscopy.
    Gerscher S; Mylrajan M; Hildebrandt P; Baron MH; Müller R; Engelhard M
    Biochemistry; 1997 Sep; 36(36):11012-20. PubMed ID: 9283093
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence for a 13,14-cis cycle in bacteriorhodopsin.
    Tavan P; Schulten K
    Biophys J; 1986 Jul; 50(1):81-9. PubMed ID: 19431679
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preresonance Raman spectra of crystals of retinal isomers.
    Cookingham RE; Lewis A; Collins DW; Marcus MA
    J Am Chem Soc; 1976 May; 98(10):2759-63. PubMed ID: 1262626
    [No Abstract]   [Full Text] [Related]  

  • 14. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular structure investigation and spectroscopic studies on 2,3-difluorophenylboronic acid: a combined experimental and theoretical analysis.
    Karabacak M; Kose E; Atac A; Ali Cipiloglu M; Kurt M
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():892-908. PubMed ID: 22902933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Naturally occurring anhydrovitamin A2. Transformation into retinene.
    Barua RK; Nayar PG
    Biochem J; 1966 Nov; 101(2):302-7. PubMed ID: 5966269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultraviolet resonance Raman spectra of Trp-182 and Trp-189 in bacteriorhodopsin: novel information on the structure of Trp-182 and its steric interaction with retinal.
    Hashimoto S; Obata K; Takeuchi H; Needleman R; Lanyi JK
    Biochemistry; 1997 Sep; 36(39):11583-90. PubMed ID: 9305948
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resonance Raman spectroscopy of chemically modified retinals: assigning the carbon--methyl vibrations in the resonance Raman spectrum of rhodopsin.
    Cookingham R; Lewis A
    J Mol Biol; 1978 Mar; 119(4):569-77. PubMed ID: 642003
    [No Abstract]   [Full Text] [Related]  

  • 19. Raman microimaging of murine lungs: insight into the vitamin A content.
    Marzec KM; Kochan K; Fedorowicz A; Jasztal A; Chruszcz-Lipska K; Dobrowolski JC; Chlopicki S; Baranska M
    Analyst; 2015 Apr; 140(7):2171-7. PubMed ID: 25535673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of substituent type and position on the adsorption mechanism of phenylboronic acids: infrared, Raman, and surface-enhanced Raman spectroscopy studies.
    Piergies N; Proniewicz E; Ozaki Y; Kim Y; Proniewicz LM
    J Phys Chem A; 2013 Jul; 117(27):5693-705. PubMed ID: 23758215
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.