BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

611 related articles for article (PubMed ID: 26240323)

  • 1. Flourishing ocean drives the end-Permian marine mass extinction.
    Schobben M; Stebbins A; Ghaderi A; Strauss H; Korn D; Korte C
    Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10298-303. PubMed ID: 26240323
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery.
    Zhang G; Zhang X; Hu D; Li D; Algeo TJ; Farquhar J; Henderson CM; Qin L; Shen M; Shen D; Schoepfer SD; Chen K; Shen Y
    Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1806-1810. PubMed ID: 28167796
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction.
    Brayard A; Escarguel G; Bucher H; Monnet C; Brühwiler T; Goudemand N; Galfetti T; Guex J
    Science; 2009 Aug; 325(5944):1118-21. PubMed ID: 19713525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Eutrophication, microbial-sulfate reduction and mass extinctions.
    Schobben M; Stebbins A; Ghaderi A; Strauss H; Korn D; Korte C
    Commun Integr Biol; 2016; 9(1):e1115162. PubMed ID: 27066181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organism activity levels predict marine invertebrate survival during ancient global change extinctions.
    Clapham ME
    Glob Chang Biol; 2017 Apr; 23(4):1477-1485. PubMed ID: 27570079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phanerozoic Earth system evolution and marine biodiversity.
    Hannisdal B; Peters SE
    Science; 2011 Nov; 334(6059):1121-4. PubMed ID: 22116884
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Geochemical evidence for widespread euxinia in the later Cambrian ocean.
    Gill BC; Lyons TW; Young SA; Kump LR; Knoll AH; Saltzman MR
    Nature; 2011 Jan; 469(7328):80-3. PubMed ID: 21209662
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calibrating the end-Permian mass extinction.
    Shen SZ; Crowley JL; Wang Y; Bowring SA; Erwin DH; Sadler PM; Cao CQ; Rothman DH; Henderson CM; Ramezani J; Zhang H; Shen Y; Wang XD; Wang W; Mu L; Li WZ; Tang YG; Liu XL; Liu LJ; Zeng Y; Jiang YF; Jin YG
    Science; 2011 Dec; 334(6061):1367-72. PubMed ID: 22096103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfate burial constraints on the Phanerozoic sulfur cycle.
    Halevy I; Peters SE; Fischer WW
    Science; 2012 Jul; 337(6092):331-4. PubMed ID: 22822147
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of soil erosion and anoxic-euxinic ocean in the Permian-Triassic marine crisis.
    Kaiho K; Saito R; Ito K; Miyaji T; Biswas R; Tian L; Sano H; Shi Z; Takahashi S; Tong J; Liang L; Oba M; Nara FW; Tsuchiya N; Chen ZQ
    Heliyon; 2016 Aug; 2(8):e00137. PubMed ID: 27547833
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ocean acidification and the Permo-Triassic mass extinction.
    Clarkson MO; Kasemann SA; Wood RA; Lenton TM; Daines SJ; Richoz S; Ohnemueller F; Meixner A; Poulton SW; Tipper ET
    Science; 2015 Apr; 348(6231):229-32. PubMed ID: 25859043
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paleontology. Flourishing after the end-Permian mass extinction.
    Marshall CR; Jacobs DK
    Science; 2009 Aug; 325(5944):1079-80. PubMed ID: 19713513
    [No Abstract]   [Full Text] [Related]  

  • 13. Large perturbations of the carbon cycle during recovery from the end-permian extinction.
    Payne JL; Lehrmann DJ; Wei J; Orchard MJ; Schrag DP; Knoll AH
    Science; 2004 Jul; 305(5683):506-9. PubMed ID: 15273391
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A diagenetic control on the Early Triassic Smithian-Spathian carbon isotopic excursions recorded in the marine settings of the Thaynes Group (Utah, USA).
    Thomazo C; Vennin E; Brayard A; Bour I; Mathieu O; Elmeknassi S; Olivier N; Escarguel G; Bylund KG; Jenks J; Stephen DA; Fara E
    Geobiology; 2016 May; 14(3):220-36. PubMed ID: 26842810
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2.
    Owens JD; Gill BC; Jenkyns HC; Bates SM; Severmann S; Kuypers MM; Woodfine RG; Lyons TW
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18407-12. PubMed ID: 24170863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marine anoxia and delayed Earth system recovery after the end-Permian extinction.
    Lau KV; Maher K; Altiner D; Kelley BM; Kump LR; Lehrmann DJ; Silva-Tamayo JC; Weaver KL; Yu M; Payne JL
    Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2360-5. PubMed ID: 26884155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery.
    Fu W; Jiang DY; Montañez IP; Meyers SR; Motani R; Tintori A
    Sci Rep; 2016 Jun; 6():27793. PubMed ID: 27292969
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotic and environmental dynamics through the Late Jurassic-Early Cretaceous transition: evidence for protracted faunal and ecological turnover.
    Tennant JP; Mannion PD; Upchurch P; Sutton MD; Price GD
    Biol Rev Camb Philos Soc; 2017 May; 92(2):776-814. PubMed ID: 26888552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction.
    Penn JL; Deutsch C; Payne JL; Sperling EA
    Science; 2018 Dec; 362(6419):. PubMed ID: 30523082
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology.
    Stockey RG; Pohl A; Ridgwell A; Finnegan S; Sperling EA
    Proc Natl Acad Sci U S A; 2021 Oct; 118(41):. PubMed ID: 34607946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.