These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
618 related articles for article (PubMed ID: 26240323)
1. Flourishing ocean drives the end-Permian marine mass extinction. Schobben M; Stebbins A; Ghaderi A; Strauss H; Korn D; Korte C Proc Natl Acad Sci U S A; 2015 Aug; 112(33):10298-303. PubMed ID: 26240323 [TBL] [Abstract][Full Text] [Related]
2. Redox chemistry changes in the Panthalassic Ocean linked to the end-Permian mass extinction and delayed Early Triassic biotic recovery. Zhang G; Zhang X; Hu D; Li D; Algeo TJ; Farquhar J; Henderson CM; Qin L; Shen M; Shen D; Schoepfer SD; Chen K; Shen Y Proc Natl Acad Sci U S A; 2017 Feb; 114(8):1806-1810. PubMed ID: 28167796 [TBL] [Abstract][Full Text] [Related]
3. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Brayard A; Escarguel G; Bucher H; Monnet C; Brühwiler T; Goudemand N; Galfetti T; Guex J Science; 2009 Aug; 325(5944):1118-21. PubMed ID: 19713525 [TBL] [Abstract][Full Text] [Related]
4. Eutrophication, microbial-sulfate reduction and mass extinctions. Schobben M; Stebbins A; Ghaderi A; Strauss H; Korn D; Korte C Commun Integr Biol; 2016; 9(1):e1115162. PubMed ID: 27066181 [TBL] [Abstract][Full Text] [Related]
5. Organism activity levels predict marine invertebrate survival during ancient global change extinctions. Clapham ME Glob Chang Biol; 2017 Apr; 23(4):1477-1485. PubMed ID: 27570079 [TBL] [Abstract][Full Text] [Related]
6. Phanerozoic Earth system evolution and marine biodiversity. Hannisdal B; Peters SE Science; 2011 Nov; 334(6059):1121-4. PubMed ID: 22116884 [TBL] [Abstract][Full Text] [Related]
7. Geochemical evidence for widespread euxinia in the later Cambrian ocean. Gill BC; Lyons TW; Young SA; Kump LR; Knoll AH; Saltzman MR Nature; 2011 Jan; 469(7328):80-3. PubMed ID: 21209662 [TBL] [Abstract][Full Text] [Related]
8. Calibrating the end-Permian mass extinction. Shen SZ; Crowley JL; Wang Y; Bowring SA; Erwin DH; Sadler PM; Cao CQ; Rothman DH; Henderson CM; Ramezani J; Zhang H; Shen Y; Wang XD; Wang W; Mu L; Li WZ; Tang YG; Liu XL; Liu LJ; Zeng Y; Jiang YF; Jin YG Science; 2011 Dec; 334(6061):1367-72. PubMed ID: 22096103 [TBL] [Abstract][Full Text] [Related]
10. Effects of soil erosion and anoxic-euxinic ocean in the Permian-Triassic marine crisis. Kaiho K; Saito R; Ito K; Miyaji T; Biswas R; Tian L; Sano H; Shi Z; Takahashi S; Tong J; Liang L; Oba M; Nara FW; Tsuchiya N; Chen ZQ Heliyon; 2016 Aug; 2(8):e00137. PubMed ID: 27547833 [TBL] [Abstract][Full Text] [Related]
11. Ocean acidification and the Permo-Triassic mass extinction. Clarkson MO; Kasemann SA; Wood RA; Lenton TM; Daines SJ; Richoz S; Ohnemueller F; Meixner A; Poulton SW; Tipper ET Science; 2015 Apr; 348(6231):229-32. PubMed ID: 25859043 [TBL] [Abstract][Full Text] [Related]
12. Paleontology. Flourishing after the end-Permian mass extinction. Marshall CR; Jacobs DK Science; 2009 Aug; 325(5944):1079-80. PubMed ID: 19713513 [No Abstract] [Full Text] [Related]
13. Large perturbations of the carbon cycle during recovery from the end-permian extinction. Payne JL; Lehrmann DJ; Wei J; Orchard MJ; Schrag DP; Knoll AH Science; 2004 Jul; 305(5683):506-9. PubMed ID: 15273391 [TBL] [Abstract][Full Text] [Related]
14. A diagenetic control on the Early Triassic Smithian-Spathian carbon isotopic excursions recorded in the marine settings of the Thaynes Group (Utah, USA). Thomazo C; Vennin E; Brayard A; Bour I; Mathieu O; Elmeknassi S; Olivier N; Escarguel G; Bylund KG; Jenks J; Stephen DA; Fara E Geobiology; 2016 May; 14(3):220-36. PubMed ID: 26842810 [TBL] [Abstract][Full Text] [Related]
15. Sulfur isotopes track the global extent and dynamics of euxinia during Cretaceous Oceanic Anoxic Event 2. Owens JD; Gill BC; Jenkyns HC; Bates SM; Severmann S; Kuypers MM; Woodfine RG; Lyons TW Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18407-12. PubMed ID: 24170863 [TBL] [Abstract][Full Text] [Related]
16. Marine anoxia and delayed Earth system recovery after the end-Permian extinction. Lau KV; Maher K; Altiner D; Kelley BM; Kump LR; Lehrmann DJ; Silva-Tamayo JC; Weaver KL; Yu M; Payne JL Proc Natl Acad Sci U S A; 2016 Mar; 113(9):2360-5. PubMed ID: 26884155 [TBL] [Abstract][Full Text] [Related]
17. Unveiling a new oceanic anoxic event at the Norian/Rhaetian boundary (Late Triassic). Rigo M; Jin X; Godfrey L; Katz ME; Sato H; Tomimatsu Y; Zaffani M; Maron M; Satolli S; Concheri G; Cardinali A; Wu Q; Du Y; Lei JZX; van Wieren CS; Tackett LS; Campbell H; Bertinelli A; Onoue T Sci Rep; 2024 Jul; 14(1):15574. PubMed ID: 38971867 [TBL] [Abstract][Full Text] [Related]
18. Eccentricity and obliquity paced carbon cycling in the Early Triassic and implications for post-extinction ecosystem recovery. Fu W; Jiang DY; Montañez IP; Meyers SR; Motani R; Tintori A Sci Rep; 2016 Jun; 6():27793. PubMed ID: 27292969 [TBL] [Abstract][Full Text] [Related]
19. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Penn JL; Deutsch C; Payne JL; Sperling EA Science; 2018 Dec; 362(6419):. PubMed ID: 30523082 [TBL] [Abstract][Full Text] [Related]
20. Decreasing Phanerozoic extinction intensity as a consequence of Earth surface oxygenation and metazoan ecophysiology. Stockey RG; Pohl A; Ridgwell A; Finnegan S; Sperling EA Proc Natl Acad Sci U S A; 2021 Oct; 118(41):. PubMed ID: 34607946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]