BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 26240415)

  • 1. Optogenetics in Freely Moving Mammals: Dopamine and Reward.
    Zhang F; Tsai HC; Airan RD; Stuber GD; Adamantidis AR; de Lecea L; Bonci A; Deisseroth K
    Cold Spring Harb Protoc; 2015 Aug; 2015(8):715-24. PubMed ID: 26240415
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated wireless fast-scan cyclic voltammetry recording and electrical stimulation for reward-predictive learning in awake, freely moving rats.
    Li YT; Wickens JR; Huang YL; Pan WH; Chen FY; Chen JJ
    J Neural Eng; 2013 Aug; 10(4):046007. PubMed ID: 23770892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Brief optogenetic inhibition of dopamine neurons mimics endogenous negative reward prediction errors.
    Chang CY; Esber GR; Marrero-Garcia Y; Yau HJ; Bonci A; Schoenbaum G
    Nat Neurosci; 2016 Jan; 19(1):111-6. PubMed ID: 26642092
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Brain Reward Circuit and Pain.
    Watanabe M; Narita M
    Adv Exp Med Biol; 2018; 1099():201-210. PubMed ID: 30306526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction.
    Saunders BT; Richard JM; Janak PH
    Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140210. PubMed ID: 26240425
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The biological and behavioral computations that influence dopamine responses.
    Stauffer WR
    Curr Opin Neurobiol; 2018 Apr; 49():123-131. PubMed ID: 29505948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cerebellar modulation of the reward circuitry and social behavior.
    Carta I; Chen CH; Schott AL; Dorizan S; Khodakhah K
    Science; 2019 Jan; 363(6424):. PubMed ID: 30655412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice.
    Berg L; Gerdey J; Masseck OA
    J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders.
    Cho KK; Sohal VS
    Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optogenetic Modulation of Locomotor Activity on Free-Behaving Rats.
    Xu K; Zhang J; Guo S; Zheng X
    Methods Mol Biol; 2016; 1408():195-206. PubMed ID: 26965124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optogenetic Manipulation of Selective Neural Activity in Free-Moving Drosophila Adults.
    Hsiao PY; Wu MC; Lin YY; Fu CC; Chiang AS
    Methods Mol Biol; 2016; 1408():377-87. PubMed ID: 26965137
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Establishing causality for dopamine in neural function and behavior with optogenetics.
    Steinberg EE; Janak PH
    Brain Res; 2013 May; 1511():46-64. PubMed ID: 23031636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic approaches to study the mammalian brain.
    Deubner J; Coulon P; Diester I
    Curr Opin Struct Biol; 2019 Aug; 57():157-163. PubMed ID: 31082625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trial and error.
    Eshel N
    Science; 2016 Dec; 354(6316):1108-1109. PubMed ID: 27934726
    [No Abstract]   [Full Text] [Related]  

  • 15. Optogenetic insights into striatal function and behavior.
    Lenz JD; Lobo MK
    Behav Brain Res; 2013 Oct; 255():44-54. PubMed ID: 23628212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures.
    Zhang F; Gradinaru V; Adamantidis AR; Durand R; Airan RD; de Lecea L; Deisseroth K
    Nat Protoc; 2010 Mar; 5(3):439-56. PubMed ID: 20203662
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic dissection of neural circuitry: from synaptic causalities to blue prints for novel treatments of behavioral diseases.
    Lüscher C; Pascoli V; Creed M
    Curr Opin Neurobiol; 2015 Dec; 35():95-100. PubMed ID: 26264408
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two Different Real-Time Place Preference Paradigms Using Optogenetics within the Ventral Tegmental Area of the Mouse.
    Bimpisidis Z; König N; Wallén-Mackenzie Å
    J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116305
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of the runway model of intracranial self-stimulation behavior and comparison with other motivated behaviors.
    Esumi S; Kawasaki Y; Gomita Y; Kitamura Y; Sendo T
    Acta Med Okayama; 2014; 68(5):255-62. PubMed ID: 25338481
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.