These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Brain Reward Circuit and Pain. Watanabe M; Narita M Adv Exp Med Biol; 2018; 1099():201-210. PubMed ID: 30306526 [TBL] [Abstract][Full Text] [Related]
5. Contemporary approaches to neural circuit manipulation and mapping: focus on reward and addiction. Saunders BT; Richard JM; Janak PH Philos Trans R Soc Lond B Biol Sci; 2015 Sep; 370(1677):20140210. PubMed ID: 26240425 [TBL] [Abstract][Full Text] [Related]
6. The biological and behavioral computations that influence dopamine responses. Stauffer WR Curr Opin Neurobiol; 2018 Apr; 49():123-131. PubMed ID: 29505948 [TBL] [Abstract][Full Text] [Related]
7. Cerebellar modulation of the reward circuitry and social behavior. Carta I; Chen CH; Schott AL; Dorizan S; Khodakhah K Science; 2019 Jan; 363(6424):. PubMed ID: 30655412 [TBL] [Abstract][Full Text] [Related]
8. Optogenetic Manipulation of Neuronal Activity to Modulate Behavior in Freely Moving Mice. Berg L; Gerdey J; Masseck OA J Vis Exp; 2020 Oct; (164):. PubMed ID: 33191936 [TBL] [Abstract][Full Text] [Related]
9. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders. Cho KK; Sohal VS Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218 [TBL] [Abstract][Full Text] [Related]
10. Optogenetic Modulation of Locomotor Activity on Free-Behaving Rats. Xu K; Zhang J; Guo S; Zheng X Methods Mol Biol; 2016; 1408():195-206. PubMed ID: 26965124 [TBL] [Abstract][Full Text] [Related]
11. Optogenetic Manipulation of Selective Neural Activity in Free-Moving Drosophila Adults. Hsiao PY; Wu MC; Lin YY; Fu CC; Chiang AS Methods Mol Biol; 2016; 1408():377-87. PubMed ID: 26965137 [TBL] [Abstract][Full Text] [Related]
12. Establishing causality for dopamine in neural function and behavior with optogenetics. Steinberg EE; Janak PH Brain Res; 2013 May; 1511():46-64. PubMed ID: 23031636 [TBL] [Abstract][Full Text] [Related]
13. Optogenetic approaches to study the mammalian brain. Deubner J; Coulon P; Diester I Curr Opin Struct Biol; 2019 Aug; 57():157-163. PubMed ID: 31082625 [TBL] [Abstract][Full Text] [Related]
14. Trial and error. Eshel N Science; 2016 Dec; 354(6316):1108-1109. PubMed ID: 27934726 [No Abstract] [Full Text] [Related]
15. Optogenetic insights into striatal function and behavior. Lenz JD; Lobo MK Behav Brain Res; 2013 Oct; 255():44-54. PubMed ID: 23628212 [TBL] [Abstract][Full Text] [Related]
16. Optogenetic interrogation of neural circuits: technology for probing mammalian brain structures. Zhang F; Gradinaru V; Adamantidis AR; Durand R; Airan RD; de Lecea L; Deisseroth K Nat Protoc; 2010 Mar; 5(3):439-56. PubMed ID: 20203662 [TBL] [Abstract][Full Text] [Related]
17. Optogenetic dissection of neural circuitry: from synaptic causalities to blue prints for novel treatments of behavioral diseases. Lüscher C; Pascoli V; Creed M Curr Opin Neurobiol; 2015 Dec; 35():95-100. PubMed ID: 26264408 [TBL] [Abstract][Full Text] [Related]
18. Two Different Real-Time Place Preference Paradigms Using Optogenetics within the Ventral Tegmental Area of the Mouse. Bimpisidis Z; König N; Wallén-Mackenzie Å J Vis Exp; 2020 Feb; (156):. PubMed ID: 32116305 [TBL] [Abstract][Full Text] [Related]
19. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior. Hollerman JR; Tremblay L; Schultz W Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648 [TBL] [Abstract][Full Text] [Related]
20. Characteristics of the runway model of intracranial self-stimulation behavior and comparison with other motivated behaviors. Esumi S; Kawasaki Y; Gomita Y; Kitamura Y; Sendo T Acta Med Okayama; 2014; 68(5):255-62. PubMed ID: 25338481 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]