These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26240871)

  • 1. Quantifying aquatic insect deposition from lake to land.
    Dreyer J; Townsend PA; Hook JC; Hoekman D; Vander Zanden MJ; Gratton C
    Ecology; 2015 Feb; 96(2):499-509. PubMed ID: 26240871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flux of aquatic insect productivity to land: comparison of lentic and lotic ecosystems.
    Gratton C; Vander Zanden MJ
    Ecology; 2009 Oct; 90(10):2689-99. PubMed ID: 19886479
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lake to land subsidies: experimental addition of aquatic insects increases terrestrial arthropod densities.
    Hoekman D; Dreyer J; Jackson RD; Townsend PA; Gratton C
    Ecology; 2011 Nov; 92(11):2063-72. PubMed ID: 22164831
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cross-ecosystem fluxes: Export of polyunsaturated fatty acids from aquatic to terrestrial ecosystems via emerging insects.
    Martin-Creuzburg D; Kowarik C; Straile D
    Sci Total Environ; 2017 Jan; 577():174-182. PubMed ID: 27810302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ecosystem linkages revealed by experimental lake-derived isotope signal in heathland food webs.
    Hoekman D; Bartrons M; Gratton C
    Oecologia; 2012 Nov; 170(3):735-43. PubMed ID: 22526944
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Increased duration of aquatic resource pulse alters community and ecosystem responses in a subarctic plant community.
    Gratton C; Hoekman D; Dreyer J; Jackson RD
    Ecology; 2017 Nov; 98(11):2860-2872. PubMed ID: 28771689
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing spatial deposition of aquatic subsidies by insects emerging from agricultural streams.
    Raitif J; Roussel JM; Olmos M; Piscart C; Plantegenest M
    Sci Total Environ; 2022 Sep; 837():155686. PubMed ID: 35523331
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Taking the trophic bypass: aquatic-terrestrial linkage reduces methylmercury in a terrestrial food web.
    Bartrons M; Gratton C; Spiesman BJ; Vander Zanden MJ
    Ecol Appl; 2015 Jan; 25(1):151-9. PubMed ID: 26255364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ecosystem engineering alters density-dependent feedbacks in an aquatic insect population.
    Phillips JS; McCormick AR; Botsch JC; Ives AR
    Ecology; 2021 Nov; 102(11):e03513. PubMed ID: 34365638
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Studies on the massive flights of chironomid midges (Diptera: Chironomidae) as nuisance insects and plans for their control in the Lake Suwa area, central Japan. 1. Occurrence of massive flights of Tokunagayusurika akamusi].
    Hirabayashi K
    Nihon Eiseigaku Zasshi; 1991 Jun; 46(2):652-61. PubMed ID: 1890773
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-amplitude fluctuations and alternative dynamical states of midges in Lake Myvatn.
    Ives AR; Einarsson A; Jansen VA; Gardarsson A
    Nature; 2008 Mar; 452(7183):84-7. PubMed ID: 18322533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of acid deposition on watershed ecosystems of national parks in the great lakes basin.
    Stottlemyer R; Rutkowski D; Toczydlowski D
    Environ Monit Assess; 1989 Apr; 12(1):65. PubMed ID: 24249065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying consumer-resource population dynamics using paleoecological data.
    Einarsson Á; Hauptfleisch U; Leavitt PR; Ives AR
    Ecology; 2016 Feb; 97(2):361-71. PubMed ID: 27145611
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A temporal perspective on aquatic subsidy: Bti affects emergence of Chironomidae.
    Kolbenschlag S; Gerstle V; Eberhardt J; Bollinger E; Schulz R; Brühl CA; Bundschuh M
    Ecotoxicol Environ Saf; 2023 Jan; 250():114503. PubMed ID: 36610297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inland waters and their role in the carbon cycle of Alaska.
    Stackpoole SM; Butman DE; Clow DW; Verdin KL; Gaglioti BV; Genet H; Striegl RG
    Ecol Appl; 2017 Jul; 27(5):1403-1420. PubMed ID: 28376236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reconstructing midge consumer-resource dynamics using carbon stable isotope signatures of archived specimens.
    McCormick AR; Phillips JS; Botsch JC; Einarsson Á; Gardarsson A; Ives AR
    Ecology; 2023 Feb; 104(2):e3901. PubMed ID: 36310437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Studies on the massive flights of chironomid midges (Diptera: Chironomidae) as nuisance insects and plans for their control in the Lake Suwa area, central Japan. 2. Quantitative evaluations of the nuisance of chironomid midges].
    Hirabayashi K
    Nihon Eiseigaku Zasshi; 1991 Jun; 46(2):662-75. PubMed ID: 1890774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of nitrogen deposition on forest and lake food webs in nitrogen-limited environments.
    Meunier CL; Gundale MJ; Sánchez IS; Liess A
    Glob Chang Biol; 2016 Jan; 22(1):164-79. PubMed ID: 25953197
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seasonal and spatial variations of stream insect emergence in an intensive agricultural landscape.
    Raitif J; Plantegenest M; Agator O; Piscart C; Roussel JM
    Sci Total Environ; 2018 Dec; 644():594-601. PubMed ID: 29990909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Navigation in darkness: How the marine midge (Pontomyia oceana) locates hard substrates above the water level to lay eggs.
    Chang CG; Hsu CH; Soong K
    PLoS One; 2021; 16(1):e0246060. PubMed ID: 33493219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.