These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 26241117)

  • 21. Orientation determination of interfacial beta-sheet structures in situ.
    Nguyen KT; King JT; Chen Z
    J Phys Chem B; 2010 Jul; 114(25):8291-300. PubMed ID: 20504035
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physiologically-relevant modes of membrane interactions by the human antimicrobial peptide, LL-37, revealed by SFG experiments.
    Ding B; Soblosky L; Nguyen K; Geng J; Yu X; Ramamoorthy A; Chen Z
    Sci Rep; 2013; 3():1854. PubMed ID: 23676762
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Orientation and dynamics of an antimicrobial peptide in the lipid bilayer by solid-state NMR spectroscopy.
    Yamaguchi S; Huster D; Waring A; Lehrer RI; Kearney W; Tack BF; Hong M
    Biophys J; 2001 Oct; 81(4):2203-14. PubMed ID: 11566791
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular interactions between magainin 2 and model membranes in situ.
    Nguyen KT; Le Clair SV; Ye S; Chen Z
    J Phys Chem B; 2009 Sep; 113(36):12358-63. PubMed ID: 19728722
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes.
    Ulmschneider JP; Ulmschneider MB
    Acc Chem Res; 2018 May; 51(5):1106-1116. PubMed ID: 29667836
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Real-time quantitative analysis of lipid disordering by aurein 1.2 during membrane adsorption, destabilisation and lysis.
    Lee TH; Heng C; Swann MJ; Gehman JD; Separovic F; Aguilar MI
    Biochim Biophys Acta; 2010 Oct; 1798(10):1977-86. PubMed ID: 20599687
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Binding free energy and counterion release for adsorption of the antimicrobial peptide lactoferricin B on a POPG membrane.
    Tolokh IS; Vivcharuk V; Tomberli B; Gray CG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 1):031911. PubMed ID: 19905150
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ molecular-level insights into the interfacial structure changes of membrane-associated prion protein fragment [118-135] investigated by sum frequency generation vibrational spectroscopy.
    Li H; Ye S; Wei F; Ma S; Luo Y
    Langmuir; 2012 Dec; 28(49):16979-88. PubMed ID: 23116165
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sum frequency generation and solid-state NMR study of the structure, orientation, and dynamics of polystyrene-adsorbed peptides.
    Weidner T; Breen NF; Li K; Drobny GP; Castner DG
    Proc Natl Acad Sci U S A; 2010 Jul; 107(30):13288-93. PubMed ID: 20628016
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phosphate-mediated arginine insertion into lipid membranes and pore formation by a cationic membrane peptide from solid-state NMR.
    Tang M; Waring AJ; Hong M
    J Am Chem Soc; 2007 Sep; 129(37):11438-46. PubMed ID: 17705480
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structure and orientation of interfacial proteins determined by sum frequency generation vibrational spectroscopy: method and application.
    Ye S; Wei F; Li H; Tian K; Luo Y
    Adv Protein Chem Struct Biol; 2013; 93():213-55. PubMed ID: 24018327
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interactions between Surface-Immobilized Antimicrobial Peptides and Model Bacterial Cell Membranes.
    Han X; Zheng J; Lin F; Kuroda K; Chen Z
    Langmuir; 2018 Jan; 34(1):512-520. PubMed ID: 29232144
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane interactions of novicidin, a novel antimicrobial peptide: phosphatidylglycerol promotes bilayer insertion.
    Dorosz J; Gofman Y; Kolusheva S; Otzen D; Ben-Tal N; Nielsen NC; Jelinek R
    J Phys Chem B; 2010 Sep; 114(34):11053-60. PubMed ID: 20690652
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Proteins at interfaces probed by chiral vibrational sum frequency generation spectroscopy.
    Yan EC; Wang Z; Fu L
    J Phys Chem B; 2015 Feb; 119(7):2769-85. PubMed ID: 25565412
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering antimicrobial peptides with improved antimicrobial and hemolytic activities.
    Zhao J; Zhao C; Liang G; Zhang M; Zheng J
    J Chem Inf Model; 2013 Dec; 53(12):3280-96. PubMed ID: 24279498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Accurate determination of interfacial protein secondary structure by combining interfacial-sensitive amide I and amide III spectral signals.
    Ye S; Li H; Yang W; Luo Y
    J Am Chem Soc; 2014 Jan; 136(4):1206-9. PubMed ID: 24384041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 2D IR cross peaks reveal hydrogen-deuterium exchange with single residue specificity.
    Dunkelberger EB; Woys AM; Zanni MT
    J Phys Chem B; 2013 Dec; 117(49):15297-305. PubMed ID: 23659731
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Theoretical vibrational sum-frequency generation spectroscopy of water near lipid and surfactant monolayer interfaces.
    Roy S; Gruenbaum SM; Skinner JL
    J Chem Phys; 2014 Nov; 141(18):18C502. PubMed ID: 25399167
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Theoretical Sum Frequency Generation Spectroscopy of Peptides.
    Carr JK; Wang L; Roy S; Skinner JL
    J Phys Chem B; 2015 Jul; 119(29):8969-83. PubMed ID: 25203677
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chiral vibrational structures of proteins at interfaces probed by sum frequency generation spectroscopy.
    Fu L; Wang Z; Yan EC
    Int J Mol Sci; 2011; 12(12):9404-25. PubMed ID: 22272140
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.