These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 26241164)

  • 1. The cortical effect of chewing gum during hand movements: A functional MRI study.
    Jang SH; Kwon HC; Kwon HG; Jang WH
    Somatosens Mot Res; 2015; 32(2):110-3. PubMed ID: 26241164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The cortical effect of clapping in the human brain: A functional MRI study.
    Kim MJ; Hong JH; Jang SH
    NeuroRehabilitation; 2011; 28(2):75-9. PubMed ID: 21447906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fronto-parietal network for chewing of gum: a study on human subjects with functional magnetic resonance imaging.
    Takada T; Miyamoto T
    Neurosci Lett; 2004 Apr; 360(3):137-40. PubMed ID: 15082152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chewing-side preference is involved in differential cortical activation patterns during tongue movements after bilateral gum-chewing: a functional magnetic resonance imaging study.
    Shinagawa H; Ono T; Honda E; Sasaki T; Taira M; Iriki A; Kuroda T; Ohyama K
    J Dent Res; 2004 Oct; 83(10):762-6. PubMed ID: 15381715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cortical activation effect of phonation on a motor task: a functional MRI study.
    Lee MY; Kwon YH; Park JW; Choi JH; Son SM; Ahn SH; Cho YW; Jang SH
    NeuroRehabilitation; 2010; 26(4):325-9. PubMed ID: 20555155
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in cortical, cerebellar and basal ganglia representation after comprehensive long term unilateral hand motor training.
    Walz AD; Doppl K; Kaza E; Roschka S; Platz T; Lotze M
    Behav Brain Res; 2015 Feb; 278():393-403. PubMed ID: 25194587
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The enhanced cortical activation induced by transcranial direct current stimulation during hand movements.
    Kwon YH; Jang SH
    Neurosci Lett; 2011 Apr; 492(2):105-8. PubMed ID: 21291959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mapping brain region activity during chewing: a functional magnetic resonance imaging study.
    Onozuka M; Fujita M; Watanabe K; Hirano Y; Niwa M; Nishiyama K; Saito S
    J Dent Res; 2002 Nov; 81(11):743-6. PubMed ID: 12407087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ipsilateral motor cortex activity during unimanual hand movements relates to task complexity.
    Verstynen T; Diedrichsen J; Albert N; Aparicio P; Ivry RB
    J Neurophysiol; 2005 Mar; 93(3):1209-22. PubMed ID: 15525809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of brain activity involved in chewing-side preference during chewing: an fMRI study.
    Jiang H; Liu H; Liu G; Jin Z; Wang L; Ma J; Li H
    J Oral Rehabil; 2015 Jan; 42(1):27-33. PubMed ID: 25159029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemispheric prevalence during chewing in normal right-handed and left-handed subjects: a functional magnetic resonance imaging preliminary study.
    Bracco P; Anastasi G; Piancino MG; Frongia G; Milardi D; Favaloro A; Bramanti P
    Cranio; 2010 Apr; 28(2):114-21. PubMed ID: 20491233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Symmetry of fMRI activation in the primary sensorimotor cortex during unilateral chewing.
    Lotze M; Domin M; Kordass B
    Clin Oral Investig; 2017 May; 21(4):967-973. PubMed ID: 27221516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of cortical activation patterns by somatosensory stimulation on the palm and dorsum of the hand.
    Jang SH; Seo JP; Ahn SH; Lee MY
    Somatosens Mot Res; 2013 Sep; 30(3):109-13. PubMed ID: 23593982
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain activation during execution and motor imagery of novel and skilled sequential hand movements.
    Lacourse MG; Orr EL; Cramer SC; Cohen MJ
    Neuroimage; 2005 Sep; 27(3):505-19. PubMed ID: 16046149
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional magnetic resonance imaging reveals age-related alterations to motor networks in weighted elbow flexion-extension movement.
    Kim JH; Lee YS; Lee JJ; Song HJ; Yoo DS; Lee HJ; Kim HJ; Chang Y
    Neurol Res; 2010 Nov; 32(9):995-1001. PubMed ID: 20433774
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related changes in brain regional activity during chewing: a functional magnetic resonance imaging study.
    Onozuka M; Fujita M; Watanabe K; Hirano Y; Niwa M; Nishiyama K; Saito S
    J Dent Res; 2003 Aug; 82(8):657-60. PubMed ID: 12885854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Temporomandibular joint articulations on working side during chewing in adult females with cross-bite and mandibular asymmetry.
    Yashiro K; Iwata A; Takada K; Murakami S; Uchiyama Y; Furukawa S
    J Oral Rehabil; 2015 Mar; 42(3):163-72. PubMed ID: 25545582
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical activation pattern in hemiparetic patients with pontine infarct.
    Kwon YH; Jang SH
    Eur Neurol; 2010; 64(1):9-14. PubMed ID: 20558983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cortical activation during finger tracking vs. ankle tracking in healthy subjects.
    LaPointe KE; Klein JA; Konkol ML; Kveno SM; Bhatt E; DiFabio RP; Carey JR
    Restor Neurol Neurosci; 2009; 27(4):253-264. PubMed ID: 19813287
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand.
    François-Brosseau FE; Martinu K; Strafella AP; Petrides M; Simard F; Monchi O
    Eur J Neurosci; 2009 Mar; 29(6):1277-86. PubMed ID: 19302163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.