These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 26241318)

  • 1. Structural insights into the regulation of aromatic amino acid hydroxylation.
    Fitzpatrick PF
    Curr Opin Struct Biol; 2015 Dec; 35():1-6. PubMed ID: 26241318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The regulatory domain of human tryptophan hydroxylase 1 forms a stable dimer.
    Zhang S; Hinck CS; Fitzpatrick PF
    Biochem Biophys Res Commun; 2016 Aug; 476(4):457-461. PubMed ID: 27255998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrahydropterin-dependent amino acid hydroxylases.
    Fitzpatrick PF
    Annu Rev Biochem; 1999; 68():355-81. PubMed ID: 10872454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The aromatic amino acid hydroxylases.
    Fitzpatrick PF
    Adv Enzymol Relat Areas Mol Biol; 2000; 74():235-94. PubMed ID: 10800597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The aromatic amino acid hydroxylases: Structures, catalysis, and regulation of phenylalanine hydroxylase, tyrosine hydroxylase, and tryptophan hydroxylase.
    Fitzpatrick PF
    Arch Biochem Biophys; 2023 Feb; 735():109518. PubMed ID: 36639008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the catalytic mechanisms of phenylalanine and tryptophan hydroxylase from kinetic isotope effects on aromatic hydroxylation.
    Pavon JA; Fitzpatrick PF
    Biochemistry; 2006 Sep; 45(36):11030-7. PubMed ID: 16953590
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural basis of autoregulation of phenylalanine hydroxylase.
    Kobe B; Jennings IG; House CM; Michell BJ; Goodwill KE; Santarsiero BD; Stevens RC; Cotton RG; Kemp BE
    Nat Struct Biol; 1999 May; 6(5):442-8. PubMed ID: 10331871
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Allosteric mechanisms in ACT domain containing enzymes involved in amino acid metabolism.
    Liberles JS; Thórólfsson M; Martínez A
    Amino Acids; 2005 Feb; 28(1):1-12. PubMed ID: 15662561
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selectivity and affinity determinants for ligand binding to the aromatic amino acid hydroxylases.
    Teigen K; McKinney JA; Haavik J; Martínez A
    Curr Med Chem; 2007; 14(4):455-67. PubMed ID: 17305546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of 3-hydroxybenzoate hydroxylase from Comamonas testosteroni has a large tunnel for substrate and oxygen access to the active site.
    Hiromoto T; Fujiwara S; Hosokawa K; Yamaguchi H
    J Mol Biol; 2006 Dec; 364(5):878-96. PubMed ID: 17045293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single turnover kinetics of tryptophan hydroxylase: evidence for a new intermediate in the reaction of the aromatic amino acid hydroxylases.
    Pavon JA; Eser B; Huynh MT; Fitzpatrick PF
    Biochemistry; 2010 Sep; 49(35):7563-71. PubMed ID: 20687613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glyceryl ether monooxygenase resembles aromatic amino acid hydroxylases in metal ion and tetrahydrobiopterin dependence.
    Watschinger K; Keller MA; Hermetter A; Golderer G; Werner-Felmayer G; Werner ER
    Biol Chem; 2009 Jan; 390(1):3-10. PubMed ID: 19007315
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural basis for ligand-dependent dimerization of phenylalanine hydroxylase regulatory domain.
    Patel D; Kopec J; Fitzpatrick F; McCorvie TJ; Yue WW
    Sci Rep; 2016 Apr; 6():23748. PubMed ID: 27049649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of the iron-oxo hydroxylating species in the catalytic cycle of aromatic amino acid hydroxylases.
    Olsson E; Martinez A; Teigen K; Jensen VR
    Chemistry; 2011 Mar; 17(13):3746-58. PubMed ID: 21351297
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of L-tryptophan 5-hydroxylation activity by structure-based modification of L-phenylalanine 4-hydroxylase from Chromobacterium violaceum.
    Kino K; Hara R; Nozawa A
    J Biosci Bioeng; 2009 Sep; 108(3):184-9. PubMed ID: 19664549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The phylogeny of the aromatic amino acid hydroxylases revisited by characterizing phenylalanine hydroxylase from Dictyostelium discoideum.
    Siltberg-Liberles J; Steen IH; Svebak RM; Martinez A
    Gene; 2008 Dec; 427(1-2):86-92. PubMed ID: 18835579
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The solution structure of the regulatory domain of tyrosine hydroxylase.
    Zhang S; Huang T; Ilangovan U; Hinck AP; Fitzpatrick PF
    J Mol Biol; 2014 Apr; 426(7):1483-97. PubMed ID: 24361276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directed Metabolic Pathway Evolution Enables Functional Pterin-Dependent Aromatic-Amino-Acid Hydroxylation in
    Luo H; Yang L; Kim SH; Wulff T; Feist AM; Herrgard M; Palsson BØ
    ACS Synth Biol; 2020 Mar; 9(3):494-499. PubMed ID: 32149495
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mechanism of aromatic amino acid hydroxylation.
    Fitzpatrick PF
    Biochemistry; 2003 Dec; 42(48):14083-91. PubMed ID: 14640675
    [No Abstract]   [Full Text] [Related]  

  • 20. Phenylalanine meta-Hydroxylase: A Single Residue Mediates Mechanistic Control of Aromatic Amino Acid Hydroxylation.
    Grüschow S; Sadler JC; Sharratt PJ; Goss RJM
    Chembiochem; 2020 Feb; 21(3):417-422. PubMed ID: 31318464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.