These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 26241497)
41. Acrylic microspheres in vivo. X. Elimination of circulating cells by active targeting using specific monoclonal antibodies bound to microparticles. Laakso T; Andersson J; Artursson P; Edman P; Sjöholm I Life Sci; 1986 Jan; 38(2):183-90. PubMed ID: 3945162 [TBL] [Abstract][Full Text] [Related]
42. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Yoo JW; Chambers E; Mitragotri S Curr Pharm Des; 2010 Jul; 16(21):2298-307. PubMed ID: 20618151 [TBL] [Abstract][Full Text] [Related]
43. Cell-mediated delivery of synthetic nano- and microparticles. Ayer M; Klok HA J Control Release; 2017 Aug; 259():92-104. PubMed ID: 28189629 [TBL] [Abstract][Full Text] [Related]
44. Precise quantification of nanoparticle internalization. Gottstein C; Wu G; Wong BJ; Zasadzinski JA ACS Nano; 2013 Jun; 7(6):4933-45. PubMed ID: 23706031 [TBL] [Abstract][Full Text] [Related]
45. Reprogramming the rapid clearance of thrombolytics by nanoparticle encapsulation and anchoring to circulating red blood cells. Singh MP; Flynn NH; Sethuraman SN; Manouchehri S; Ritchey J; Liu J; Ramsey JD; Pope C; Ranjan A J Control Release; 2021 Jan; 329():148-161. PubMed ID: 33217476 [TBL] [Abstract][Full Text] [Related]
46. Variability in the Clearance of Lead Oxide Nanoparticles Is Associated with Alteration of Specific Membrane Transporters. Dumková J; Smutná T; Vrlíková L; Kotasová H; Dočekal B; Čapka L; Tvrdoňová M; Jakešová V; Pelková V; Křůmal K; Coufalík P; Mikuška P; Večeřa Z; Vaculovič T; Husáková Z; Kanický V; Hampl A; Buchtová M ACS Nano; 2020 Mar; 14(3):3096-3120. PubMed ID: 32105447 [TBL] [Abstract][Full Text] [Related]
47. Advanced hitchhiking nanomaterials for biomedical applications. Wang Y; Sun SK; Liu Y; Zhang Z Theranostics; 2023; 13(14):4781-4801. PubMed ID: 37771786 [TBL] [Abstract][Full Text] [Related]
48. Rapid precision targeting of nanoparticles to lung via caveolae pumping system in endothelium. Nayak TR; Chrastina A; Valencia J; Cordova-Robles O; Yedidsion R; Buss T; Cederstrom B; Koziol J; Levin MD; Olenyuk B; Schnitzer JE Nat Nanotechnol; 2024 Oct; ():. PubMed ID: 39379614 [TBL] [Abstract][Full Text] [Related]
49. Bypassing adverse injection reactions to nanoparticles through shape modification and attachment to erythrocytes. Wibroe PP; Anselmo AC; Nilsson PH; Sarode A; Gupta V; Urbanics R; Szebeni J; Hunter AC; Mitragotri S; Mollnes TE; Moghimi SM Nat Nanotechnol; 2017 Jul; 12(6):589-594. PubMed ID: 28396605 [TBL] [Abstract][Full Text] [Related]
50. Role of nanoparticle size, shape and surface chemistry in oral drug delivery. Banerjee A; Qi J; Gogoi R; Wong J; Mitragotri S J Control Release; 2016 Sep; 238():176-185. PubMed ID: 27480450 [TBL] [Abstract][Full Text] [Related]
51. Nanoparticle-based drug delivery via RBC-hitchhiking for the inhibition of lung metastases growth. Zelepukin IV; Yaremenko AV; Shipunova VO; Babenyshev AV; Balalaeva IV; Nikitin PI; Deyev SM; Nikitin MP Nanoscale; 2019 Jan; 11(4):1636-1646. PubMed ID: 30644955 [TBL] [Abstract][Full Text] [Related]
52. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Brenner JS; Pan DC; Myerson JW; Marcos-Contreras OA; Villa CH; Patel P; Hekierski H; Chatterjee S; Tao JQ; Parhiz H; Bhamidipati K; Uhler TG; Hood ED; Kiseleva RY; Shuvaev VS; Shuvaeva T; Khoshnejad M; Johnston I; Gregory JV; Lahann J; Wang T; Cantu E; Armstead WM; Mitragotri S; Muzykantov V Nat Commun; 2018 Jul; 9(1):2684. PubMed ID: 29992966 [TBL] [Abstract][Full Text] [Related]
53. Engineering supramolecular peptide nanofibers for in vivo platelet-hitchhiking beyond ligand-receptor recognition. Feng Y; Liu C; Cui W; Yang L; Wu D; Zhang H; Wang X; Sun Y; He B; Dai W; Zhang Q Sci Adv; 2024 Oct; 10(43):eadq2072. PubMed ID: 39441939 [TBL] [Abstract][Full Text] [Related]
54. Multipotent mesenchymal stromal/stem cell-based therapies for acute respiratory distress syndrome: current progress, challenges, and future frontiers. Sababathy M; Ramanathan G; Ganesan S; Sababathy S; Yasmin AR; Ramasamy R; Foo JB; Looi QH; Nur-Fazila SH Braz J Med Biol Res; 2024; 57():e13219. PubMed ID: 39417447 [TBL] [Abstract][Full Text] [Related]
55. Enhancing ovarian cancer treatment with maleimide-modified Pt(IV) prodrug nanoparticles. Bai Y; Wang Z; Liu D; Meng X; Wang H; Yu M; Zhang S; Sun T Mater Today Bio; 2024 Aug; 27():101131. PubMed ID: 39050986 [TBL] [Abstract][Full Text] [Related]
56. Using imaging modalities to predict nanoparticle distribution and treatment efficacy in solid tumors: The growing role of ultrasound. Cooley MB; Wegierak D; Exner AA Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2024; 16(2):e1957. PubMed ID: 38558290 [TBL] [Abstract][Full Text] [Related]
57. High biocompatible FITC-conjugated silica nanoparticles for cell labeling in both in vitro and in vivo models. Nguyen TT; Nguyen HN; Nghiem THL; Do XH; To TT; Do TXP; Do DL; Nguyen HG; Nguyen HM; Nguyen ND; Luu MQ; Nguyen TN; Nguyen TBN; Nguyen VT; Pham VT; Than UTT; Hoang TMN Sci Rep; 2024 Mar; 14(1):6969. PubMed ID: 38521815 [TBL] [Abstract][Full Text] [Related]
58. USE OF ARTIFICIAL CELLS AS DRUG CARRIERS. Diltemiz SE; Tavafoghi PhD M; Roberto de Barros N; Kanada M; Heinamaki J; Contag C; Seidlits S; Ashammakhi N Mater Chem Front; 2021 Sep; 5(18):6672-6692. PubMed ID: 38344270 [TBL] [Abstract][Full Text] [Related]
59. 'Passive' nanoparticles for organ-selective systemic delivery: design, mechanism and perspective. Fu L; Zhang Y; Farokhzad RA; Mendes BB; Conde J; Shi J Chem Soc Rev; 2023 Oct; 52(21):7579-7601. PubMed ID: 37817741 [TBL] [Abstract][Full Text] [Related]