These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 26241561)

  • 1. Kinetics of Ice Nucleation Confined in Nanoporous Alumina.
    Suzuki Y; Steinhart M; Butt HJ; Floudas G
    J Phys Chem B; 2015 Sep; 119(35):11960-6. PubMed ID: 26241561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamics of Ice/Water Confined in Nanoporous Alumina.
    Suzuki Y; Steinhart M; Graf R; Butt HJ; Floudas G
    J Phys Chem B; 2015 Nov; 119(46):14814-20. PubMed ID: 26511073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Homogeneous nucleation of predominantly cubic ice confined in nanoporous alumina.
    Suzuki Y; Duran H; Steinhart M; Kappl M; Butt HJ; Floudas G
    Nano Lett; 2015 Mar; 15(3):1987-92. PubMed ID: 25686014
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From homogeneous to heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement.
    Woo E; Huh J; Jeong YG; Shin K
    Phys Rev Lett; 2007 Mar; 98(13):136103. PubMed ID: 17501219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous Nucleation of Ice Confined in Hollow Silica Spheres.
    Yao Y; Ruckdeschel P; Graf R; Butt HJ; Retsch M; Floudas G
    J Phys Chem B; 2017 Jan; 121(1):306-313. PubMed ID: 27960260
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How Confinement Affects the Nucleation, Crystallization, and Dielectric Relaxation of Poly(butylene succinate) and Poly(butylene adipate) Infiltrated within Nanoporous Alumina Templates.
    Safari M; Maiz J; Shi G; Juanes D; Liu G; Wang D; Mijangos C; Alegría Á; Müller AJ
    Langmuir; 2019 Nov; 35(47):15168-15179. PubMed ID: 31621336
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystallization and Dynamics of Water Confined in Model Mesoporous Silica Particles: Two Ice Nuclei and Two Fractions of Water.
    Yao Y; Fella V; Huang W; Zhang KAI; Landfester K; Butt HJ; Vogel M; Floudas G
    Langmuir; 2019 Apr; 35(17):5890-5901. PubMed ID: 30946592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of solute on the nucleation and propagation of ice.
    Charoenrein S; Goddard M; Reid DS
    Adv Exp Med Biol; 1991; 302():191-8. PubMed ID: 1746327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of surface property on the crystallization of hentetracontane under nanoscopic cylindrical confinement.
    Kim BS; Jeong YG; Shin K
    J Phys Chem B; 2013 May; 117(19):5978-88. PubMed ID: 23586535
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low temperature phase properties of water confined in mesoporous silica MCM-41: thermodynamic and neutron scattering study.
    Kittaka S; Takahara S; Matsumoto H; Wada Y; Satoh TJ; Yamaguchi T
    J Chem Phys; 2013 May; 138(20):204714. PubMed ID: 23742507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The nucleation rate of crystalline ice in amorphous solid water.
    Safarik DJ; Mullins CB
    J Chem Phys; 2004 Sep; 121(12):6003-10. PubMed ID: 15367028
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Theoretical prediction of the homogeneous ice nucleation rate: disentangling thermodynamics and kinetics.
    Cheng B; Dellago C; Ceriotti M
    Phys Chem Chem Phys; 2018 Nov; 20(45):28732-28740. PubMed ID: 30412211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ice nucleation and freezing in undercooled cells.
    Franks F; Mathias SF; Galfre P; Webster SD; Brown D
    Cryobiology; 1983 Jun; 20(3):298-309. PubMed ID: 6884071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallization Kinetics of Poly(ethylene oxide) under Confinement in Nanoporous Alumina Studied by in Situ X-ray Scattering and Simulation.
    Su C; Chen Y; Shi G; Li T; Liu G; Müller AJ; Wang D
    Langmuir; 2019 Sep; 35(36):11799-11808. PubMed ID: 31407905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous ice freezing temperatures and ice nucleation rates of aqueous ammonium sulfate and aqueous levoglucosan particles for relevant atmospheric conditions.
    Knopf DA; Lopez MD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8056-68. PubMed ID: 19727513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional crystallization and homogeneous nucleation of confined PEG microdomains in PBS-PEG multiblock copolymers.
    Huang CL; Jiao L; Zeng JB; Zhang JJ; Yang KK; Wang YZ
    J Phys Chem B; 2013 Sep; 117(36):10665-76. PubMed ID: 23952767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing, melting and structure of ice in a hydrophilic nanopore.
    Moore EB; de la Llave E; Welke K; Scherlis DA; Molinero V
    Phys Chem Chem Phys; 2010 Apr; 12(16):4124-34. PubMed ID: 20379503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Homogeneous ice nucleation from aqueous inorganic/organic particles representative of biomass burning: water activity, freezing temperatures, nucleation rates.
    Knopf DA; Rigg YJ
    J Phys Chem A; 2011 Feb; 115(5):762-73. PubMed ID: 21235213
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of ultrasonic waves on the nucleation of pure water and degassed water.
    Yu D; Liu B; Wang B
    Ultrason Sonochem; 2012 May; 19(3):459-63. PubMed ID: 21925917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of nanoscale confinement on freezing of modified water at room temperature and ambient pressure.
    Deshmukh S; Kamath G; Sankaranarayanan SK
    Chemphyschem; 2014 Jun; 15(8):1632-42. PubMed ID: 24715572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.