These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

856 related articles for article (PubMed ID: 26241648)

  • 41. Pericyte abundance affects sucrose permeability in cultures of rat brain microvascular endothelial cells.
    Parkinson FE; Hacking C
    Brain Res; 2005 Jul; 1049(1):8-14. PubMed ID: 15935996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Establishment of a new conditionally immortalized cell line from human brain microvascular endothelial cells: a promising tool for human blood-brain barrier studies.
    Kamiichi A; Furihata T; Kishida S; Ohta Y; Saito K; Kawamatsu S; Chiba K
    Brain Res; 2012 Dec; 1488():113-22. PubMed ID: 23041702
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Comparison of the rate of dedifferentiation with increasing passages among cell sources for an in vitro model of the blood-brain barrier.
    Fujimoto T; Morofuji Y; Nakagawa S; Kovac A; Horie N; Izumo T; Niwa M; Matsuo T; Banks WA
    J Neural Transm (Vienna); 2020 Aug; 127(8):1117-1124. PubMed ID: 32382826
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of transendothelial permeability and expression of ATP-binding cassette transporters in cultured brain capillary endothelial cells by astrocytic factors and cell-culture conditions.
    Török M; Huwyler J; Gutmann H; Fricker G; Drewe J
    Exp Brain Res; 2003 Dec; 153(3):356-65. PubMed ID: 14610630
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Pericyte-endothelial cell interaction increases MMP-9 secretion at the blood-brain barrier in vitro.
    Zozulya A; Weidenfeller C; Galla HJ
    Brain Res; 2008 Jan; 1189():1-11. PubMed ID: 18061148
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Silver nanoparticles induce tight junction disruption and astrocyte neurotoxicity in a rat blood-brain barrier primary triple coculture model.
    Xu L; Dan M; Shao A; Cheng X; Zhang C; Yokel RA; Takemura T; Hanagata N; Niwa M; Watanabe D
    Int J Nanomedicine; 2015; 10():6105-18. PubMed ID: 26491287
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics.
    Bergmann S; Lawler SE; Qu Y; Fadzen CM; Wolfe JM; Regan MS; Pentelute BL; Agar NYR; Cho CF
    Nat Protoc; 2018 Dec; 13(12):2827-2843. PubMed ID: 30382243
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Culture-induced changes in mRNA expression levels of efflux and SLC-transporters in brain endothelial cells.
    Goldeman C; Ozgür B; Brodin B
    Fluids Barriers CNS; 2020 Apr; 17(1):32. PubMed ID: 32321539
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Establishment of a simplified in vitro porcine blood-brain barrier model with high transendothelial electrical resistance.
    Patabendige A; Skinner RA; Abbott NJ
    Brain Res; 2013 Jul; 1521():1-15. PubMed ID: 22789905
    [TBL] [Abstract][Full Text] [Related]  

  • 50. An isogenic blood-brain barrier model comprising brain endothelial cells, astrocytes, and neurons derived from human induced pluripotent stem cells.
    Canfield SG; Stebbins MJ; Morales BS; Asai SW; Vatine GD; Svendsen CN; Palecek SP; Shusta EV
    J Neurochem; 2017 Mar; 140(6):874-888. PubMed ID: 27935037
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effects of 2,3,7,8-tetrachlorodibenzo-p-dioxin on the development and function of the blood-brain barrier.
    Miyazaki W; Fujiwara Y; Katoh T
    Neurotoxicology; 2016 Jan; 52():64-71. PubMed ID: 26582458
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Blood-brain-barrier spheroids as an in vitro screening platform for brain-penetrating agents.
    Cho CF; Wolfe JM; Fadzen CM; Calligaris D; Hornburg K; Chiocca EA; Agar NYR; Pentelute BL; Lawler SE
    Nat Commun; 2017 Jun; 8():15623. PubMed ID: 28585535
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Brain endothelial cells and the glio-vascular complex.
    Wolburg H; Noell S; Mack A; Wolburg-Buchholz K; Fallier-Becker P
    Cell Tissue Res; 2009 Jan; 335(1):75-96. PubMed ID: 18633647
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Lipopolysaccharide-induced blood-brain barrier disruption: roles of cyclooxygenase, oxidative stress, neuroinflammation, and elements of the neurovascular unit.
    Banks WA; Gray AM; Erickson MA; Salameh TS; Damodarasamy M; Sheibani N; Meabon JS; Wing EE; Morofuji Y; Cook DG; Reed MJ
    J Neuroinflammation; 2015 Nov; 12():223. PubMed ID: 26608623
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Pericytes from Mesenchymal Stem Cells as a model for the blood-brain barrier.
    Tian X; Brookes O; Battaglia G
    Sci Rep; 2017 Jan; 7():39676. PubMed ID: 28098158
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Methods to assess pericyte-endothelial cell interactions in a coculture model.
    Thanabalasundaram G; El-Gindi J; Lischper M; Galla HJ
    Methods Mol Biol; 2011; 686():379-99. PubMed ID: 21082383
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Melatonin protects blood-brain barrier integrity and permeability by inhibiting matrix metalloproteinase-9 via the NOTCH3/NF-κB pathway.
    Qin W; Li J; Zhu R; Gao S; Fan J; Xia M; Zhao RC; Zhang J
    Aging (Albany NY); 2019 Dec; 11(23):11391-11415. PubMed ID: 31811815
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Membrane configuration optimization for a murine in vitro blood-brain barrier model.
    Wuest DM; Wing AM; Lee KH
    J Neurosci Methods; 2013 Jan; 212(2):211-21. PubMed ID: 23131353
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Contribution of glial cells and pericytes to the mRNA profiles of P-glycoprotein and multidrug resistance-associated proteins in an in vitro model of the blood-brain barrier.
    Berezowski V; Landry C; Dehouck MP; Cecchelli R; Fenart L
    Brain Res; 2004 Aug; 1018(1):1-9. PubMed ID: 15262198
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Astrocyte mediated modulation of blood-brain barrier permeability does not correlate with a loss of tight junction proteins from the cellular contacts.
    Hamm S; Dehouck B; Kraus J; Wolburg-Buchholz K; Wolburg H; Risau W; Cecchelli R; Engelhardt B; Dehouck MP
    Cell Tissue Res; 2004 Feb; 315(2):157-66. PubMed ID: 14615934
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 43.