These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
438 related articles for article (PubMed ID: 26241704)
1. Modeling Aggregation of Ionic Surfactants Using a Smeared Charge Approximation in Dissipative Particle Dynamics Simulations. Mao R; Lee MT; Vishnyakov A; Neimark AV J Phys Chem B; 2015 Sep; 119(35):11673-83. PubMed ID: 26241704 [TBL] [Abstract][Full Text] [Related]
2. Complementary use of simulations and molecular-thermodynamic theory to model micellization. Stephenson BC; Beers K; Blankschtein D Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068 [TBL] [Abstract][Full Text] [Related]
3. Molecular dynamics simulation of cetyltrimethylammonium bromide and sodium octyl sulfate mixtures: aggregate shape and local surfactant distribution. Chen J; Hao J Phys Chem Chem Phys; 2013 Apr; 15(15):5563-71. PubMed ID: 23463240 [TBL] [Abstract][Full Text] [Related]
4. Coarse-grained molecular dynamics simulation of self-assembly and surface adsorption of ionic surfactants using an implicit water model. Wang S; Larson RG Langmuir; 2015 Feb; 31(4):1262-71. PubMed ID: 25565113 [TBL] [Abstract][Full Text] [Related]
5. Electrolyte effect on adsorption and the phase transition from microstructures to nanostructures in ionic/ionic surfactants mixture. Moallemi M; Sohrabi B; Fazeli S J Colloid Interface Sci; 2011 Sep; 361(1):159-69. PubMed ID: 21696748 [TBL] [Abstract][Full Text] [Related]
6. Prediction of the Critical Micelle Concentration of Nonionic Surfactants by Dissipative Particle Dynamics Simulations. Vishnyakov A; Lee MT; Neimark AV J Phys Chem Lett; 2013 Mar; 4(5):797-802. PubMed ID: 26281935 [TBL] [Abstract][Full Text] [Related]
7. Electrostatic screening and charge correlation effects in micellization of ionic surfactants. Jusufi A; Hynninen AP; Haataja M; Panagiotopoulos AZ J Phys Chem B; 2009 May; 113(18):6314-20. PubMed ID: 19361177 [TBL] [Abstract][Full Text] [Related]
8. Modeling counterion binding in ionic-nonionic and ionic-zwitterionic binary surfactant mixtures. Goldsipe A; Blankschtein D Langmuir; 2005 Oct; 21(22):9850-65. PubMed ID: 16229501 [TBL] [Abstract][Full Text] [Related]
9. Gaussian Charge Distributions for Incorporation of Electrostatic Interactions in Dissipative Particle Dynamics: Application to Self-Assembly of Surfactants. Eslami H; Khani M; Müller-Plathe F J Chem Theory Comput; 2019 Jul; 15(7):4197-4207. PubMed ID: 31145600 [TBL] [Abstract][Full Text] [Related]
10. Molecular-thermodynamic theory of micellization of multicomponent surfactant mixtures: 2. pH-sensitive surfactants. Goldsipe A; Blankschtein D Langmuir; 2007 May; 23(11):5953-62. PubMed ID: 17444663 [TBL] [Abstract][Full Text] [Related]
11. Experimental and theoretical investigation of the micellar-assisted solubilization of ibuprofen in aqueous media. Stephenson BC; Rangel-Yagui CO; Pessoa Junior A; Tavares LC; Beers K; Blankschtein D Langmuir; 2006 Feb; 22(4):1514-25. PubMed ID: 16460069 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulation of SDS and CTAB micellization and prediction of partition equilibria with COSMOmic. Storm S; Jakobtorweihen S; Smirnova I; Panagiotopoulos AZ Langmuir; 2013 Sep; 29(37):11582-92. PubMed ID: 23941607 [TBL] [Abstract][Full Text] [Related]
13. Aggregate transitions in mixtures of anionic sulfonate gemini surfactant with cationic ammonium single-chain surfactant. Tian M; Zhu L; Yu D; Wang Y; Sun S; Wang Y J Phys Chem B; 2013 Jan; 117(1):433-40. PubMed ID: 23205820 [TBL] [Abstract][Full Text] [Related]
14. Dispersion of carbon nanotubes using mixed surfactants: experimental and molecular dynamics simulation studies. Sohrabi B; Poorgholami-Bejarpasi N; Nayeri N J Phys Chem B; 2014 Mar; 118(11):3094-103. PubMed ID: 24555914 [TBL] [Abstract][Full Text] [Related]
15. Coarse-Grain Molecular Dynamics Simulations To Investigate the Bulk Viscosity and Critical Micelle Concentration of the Ionic Surfactant Sodium Dodecyl Sulfate (SDS) in Aqueous Solution. Ruiz-Morales Y; Romero-Martínez A J Phys Chem B; 2018 Apr; 122(14):3931-3943. PubMed ID: 29533651 [TBL] [Abstract][Full Text] [Related]
17. Revealed Properties of Various Self-Assemblies in Two Catanionic Surfactant Systems in Relation to Their Polarity and Molecular Packing State. Watanabe N; Watase S; Kadonishi N; Okamoto Y; Umakoshi H Langmuir; 2022 Dec; 38(48):14768-14778. PubMed ID: 36437713 [TBL] [Abstract][Full Text] [Related]
18. Modeling self-assembly of silica/surfactant mesostructures in the templated synthesis of nanoporous solids. Pérez-Sánchez G; Gomes JR; Jorge M Langmuir; 2013 Feb; 29(7):2387-96. PubMed ID: 23343439 [TBL] [Abstract][Full Text] [Related]
19. Parametrization of Chain Molecules in Dissipative Particle Dynamics. Lee MT; Mao R; Vishnyakov A; Neimark AV J Phys Chem B; 2016 Jun; 120(22):4980-91. PubMed ID: 27167160 [TBL] [Abstract][Full Text] [Related]
20. Comparative refolding of guanidinium hydrochloride denatured bovine serum albumin assisted by cationic and anionic surfactants via artificial chaperone protocol: Biophysical insight. Ishtikhar M; Siddiqui Z; Husain FM; Khan RA; Hassan I Spectrochim Acta A Mol Biomol Spectrosc; 2020 Jan; 225():117510. PubMed ID: 31520999 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]