These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
268 related articles for article (PubMed ID: 26241878)
1. New derivatives of dehydroabietic acid target planktonic and biofilm bacteria in Staphylococcus aureus and effectively disrupt bacterial membrane integrity. Manner S; Vahermo M; Skogman ME; Krogerus S; Vuorela PM; Yli-Kauhaluoma J; Fallarero A; Moreira VM Eur J Med Chem; 2015 Sep; 102():68-79. PubMed ID: 26241878 [TBL] [Abstract][Full Text] [Related]
2. The synthesis and antistaphylococcal activity of dehydroabietic acid derivatives: Modifications at C-12. Liu ML; Pan XY; Yang T; Zhang WM; Wang TQ; Wang HY; Lin HX; Yang CG; Cui YM Bioorg Med Chem Lett; 2016 Nov; 26(22):5492-5496. PubMed ID: 27777007 [TBL] [Abstract][Full Text] [Related]
3. Antimicrobial activity of 1,3,4-oxadiazole derivatives against planktonic cells and biofilm of Staphylococcus aureus. Zheng Z; Liu Q; Kim W; Tharmalingam N; Fuchs BB; Mylonakis E Future Med Chem; 2018 Feb; 10(3):283-296. PubMed ID: 29334249 [TBL] [Abstract][Full Text] [Related]
4. The synthesis and antistaphylococcal activity of dehydroabietic acid derivatives: modifications at C12 and C7. Zhang WM; Yang T; Pan XY; Liu XL; Lin HX; Gao ZB; Yang CG; Cui YM Eur J Med Chem; 2017 Feb; 127():917-927. PubMed ID: 27837995 [TBL] [Abstract][Full Text] [Related]
5. Antibacterial activity of Pinus elliottii against anaerobic bacteria present in primary endodontic infections. Caetano da Silva SD; Mendes de Souza MG; Oliveira Cardoso MJ; da Silva Moraes T; Ambrósio SR; Sola Veneziani RC; Martins CH Anaerobe; 2014 Dec; 30():146-52. PubMed ID: 25270831 [TBL] [Abstract][Full Text] [Related]
6. Synthesis and biological evaluation of novel N-substituted 1H-dibenzo[a,c]carbazole derivatives of dehydroabietic acid as potential antimicrobial agents. Gu W; Qiao C; Wang SF; Hao Y; Miao TT Bioorg Med Chem Lett; 2014 Jan; 24(1):328-31. PubMed ID: 24300736 [TBL] [Abstract][Full Text] [Related]
7. (+)-Dehydroabietic acid, an abietane-type diterpene, inhibits Staphylococcus aureus biofilms in vitro. Fallarero A; Skogman M; Kujala J; Rajaratnam M; Moreira VM; Yli-Kauhaluoma J; Vuorela P Int J Mol Sci; 2013 Jun; 14(6):12054-72. PubMed ID: 23739682 [TBL] [Abstract][Full Text] [Related]
8. γ-Alkylidene-γ-lactones and isobutylpyrrol-2(5H)-ones analogues to rubrolides as inhibitors of biofilm formation by gram-positive and gram-negative bacteria. Pereira UA; Barbosa LC; Maltha CR; Demuner AJ; Masood MA; Pimenta AL Bioorg Med Chem Lett; 2014 Feb; 24(4):1052-6. PubMed ID: 24484899 [TBL] [Abstract][Full Text] [Related]
9. Antibacterial profiling of abietane-type diterpenoids. Helfenstein A; Vahermo M; Nawrot DA; Demirci F; İşcan G; Krogerus S; Yli-Kauhaluoma J; Moreira VM; Tammela P Bioorg Med Chem; 2017 Jan; 25(1):132-137. PubMed ID: 27793449 [TBL] [Abstract][Full Text] [Related]
11. The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains. Gugala N; Lemire JA; Turner RJ J Antibiot (Tokyo); 2017 Jun; 70(6):775-780. PubMed ID: 28196974 [TBL] [Abstract][Full Text] [Related]
12. Aspartate inhibits Staphylococcus aureus biofilm formation. Yang H; Wang M; Yu J; Wei H FEMS Microbiol Lett; 2015 Apr; 362(7):. PubMed ID: 25687923 [TBL] [Abstract][Full Text] [Related]
13. Disinfection efficiencies of sage and spearmint essential oils against planktonic and biofilm Staphylococcus aureus cells in comparison with sodium hypochlorite. Vetas D; Dimitropoulou E; Mitropoulou G; Kourkoutas Y; Giaouris E Int J Food Microbiol; 2017 Sep; 257():19-25. PubMed ID: 28633052 [TBL] [Abstract][Full Text] [Related]
14. Polysubstituted 2-aminoimidazoles as anti-biofilm and antiproliferative agents: Discovery of potent lead. Gill RK; Kumar V; Robijns SCA; Steenackers HPL; Van der Eycken EV; Bariwal J Eur J Med Chem; 2017 Sep; 138():152-169. PubMed ID: 28667872 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of benzoylthiourea derivatives and analysis of their antibacterial performance against planktonic Staphylococcus aureus and its biofilms. Pinheiro LCS; Hoelz LVB; Ferreira MLG; Oliveira LG; Pereira RFA; do Valle AM; André LSP; Scaffo J; Pinheiro FR; Ribeiro TAN; Sachs D; Pascoal ACRF; Boechat N; Aguiar-Alves F Lett Appl Microbiol; 2020 Dec; 71(6):645-651. PubMed ID: 32725897 [TBL] [Abstract][Full Text] [Related]
16. Effects of adaptation to carvacrol on Staphylococcus aureus in the planktonic and biofilm phases. Nostro A; Marino A; Ginestra G; Cellini L; Di Giulio M; Bisignano G Biofouling; 2017 Jul; 33(6):470-480. PubMed ID: 28521511 [TBL] [Abstract][Full Text] [Related]
17. Use of merocyanine 540 for photodynamic inactivation of Staphylococcus aureus planktonic and biofilm cells. Lin HY; Chen CT; Huang CT Appl Environ Microbiol; 2004 Nov; 70(11):6453-8. PubMed ID: 15528505 [TBL] [Abstract][Full Text] [Related]
18. Antibiotic Tolerance in Biofilm and Stationary-Phase Planktonic Cells of Kamble E; Pardesi K Microb Drug Resist; 2021 Jan; 27(1):3-12. PubMed ID: 32013708 [TBL] [Abstract][Full Text] [Related]
19. The synthesis and antistaphylococcal activity of N-sulfonaminoethyloxime derivatives of dehydroabietic acid. Zhang WM; Yao Y; Yang T; Wang XY; Zhu ZY; Xu WT; Lin HX; Gao ZB; Zhou H; Yang CG; Cui YM Bioorg Med Chem Lett; 2018 Jun; 28(10):1943-1948. PubMed ID: 29650291 [TBL] [Abstract][Full Text] [Related]
20. Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Jefferson KK; Goldmann DA; Pier GB Antimicrob Agents Chemother; 2005 Jun; 49(6):2467-73. PubMed ID: 15917548 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]