These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 26241919)
1. Microsphere-based selective laser sintering for building macroporous bone scaffolds with controlled microstructure and excellent biocompatibility. Du Y; Liu H; Shuang J; Wang J; Ma J; Zhang S Colloids Surf B Biointerfaces; 2015 Nov; 135():81-89. PubMed ID: 26241919 [TBL] [Abstract][Full Text] [Related]
2. Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Du Y; Liu H; Yang Q; Wang S; Wang J; Ma J; Noh I; Mikos AG; Zhang S Biomaterials; 2017 Aug; 137():37-48. PubMed ID: 28528301 [TBL] [Abstract][Full Text] [Related]
3. Micromechanical finite-element modeling and experimental characterization of the compressive mechanical properties of polycaprolactone-hydroxyapatite composite scaffolds prepared by selective laser sintering for bone tissue engineering. Eshraghi S; Das S Acta Biomater; 2012 Aug; 8(8):3138-43. PubMed ID: 22522129 [TBL] [Abstract][Full Text] [Related]
4. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
5. Open-Source Selective Laser Sintering (OpenSLS) of Nylon and Biocompatible Polycaprolactone. Kinstlinger IS; Bastian A; Paulsen SJ; Hwang DH; Ta AH; Yalacki DR; Schmidt T; Miller JS PLoS One; 2016; 11(2):e0147399. PubMed ID: 26841023 [TBL] [Abstract][Full Text] [Related]
6. Development of 3D PCL microsphere/TiO Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931 [TBL] [Abstract][Full Text] [Related]
7. Optimization of the configuration of porous bone scaffolds made of Polyamide/Hydroxyapatite composites using Selective Laser Sintering for tissue engineering applications. Ramu M; Ananthasubramanian M; Kumaresan T; Gandhinathan R; Jothi S Biomed Mater Eng; 2018; 29(6):739-755. PubMed ID: 30282331 [TBL] [Abstract][Full Text] [Related]
8. Design and fabrication of bone tissue scaffolds based on PCL/PHBV containing hydroxyapatite nanoparticles: dual-leaching technique. Nahanmoghadam A; Asemani M; Goodarzi V; Ebrahimi-Barough S J Biomed Mater Res A; 2021 Jun; 109(6):981-993. PubMed ID: 33448637 [TBL] [Abstract][Full Text] [Related]
9. Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Duan B; Cheung WL; Wang M Biofabrication; 2011 Mar; 3(1):015001. PubMed ID: 21245522 [TBL] [Abstract][Full Text] [Related]
10. Osteogenesis of adipose-derived stem cells on polycaprolactone-β-tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Liao HT; Lee MY; Tsai WW; Wang HC; Lu WC J Tissue Eng Regen Med; 2016 Oct; 10(10):E337-E353. PubMed ID: 23955935 [TBL] [Abstract][Full Text] [Related]
11. Preparation, in vitro degradability, cytotoxicity, and in vivo biocompatibility of porous hydroxyapatite whisker-reinforced poly(L-lactide) biocomposite scaffolds. Xie L; Yu H; Yang W; Zhu Z; Yue L J Biomater Sci Polym Ed; 2016; 27(6):505-28. PubMed ID: 26873015 [TBL] [Abstract][Full Text] [Related]
12. Selective laser sintering of porous tissue engineering scaffolds from poly(L: -lactide)/carbonated hydroxyapatite nanocomposite microspheres. Zhou WY; Lee SH; Wang M; Cheung WL; Ip WY J Mater Sci Mater Med; 2008 Jul; 19(7):2535-40. PubMed ID: 17619975 [TBL] [Abstract][Full Text] [Related]
13. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055 [TBL] [Abstract][Full Text] [Related]
14. Integrated polycaprolactone microsphere-based scaffolds with biomimetic hierarchy and tunable vascularization for osteochondral repair. Gu X; Zha Y; Li Y; Chen J; Liu S; Du Y; Zhang S; Wang J Acta Biomater; 2022 Mar; 141():190-197. PubMed ID: 35041901 [TBL] [Abstract][Full Text] [Related]
15. Polycaprolactone- and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: A comparative study. Gómez-Lizárraga KK; Flores-Morales C; Del Prado-Audelo ML; Álvarez-Pérez MA; Piña-Barba MC; Escobedo C Mater Sci Eng C Mater Biol Appl; 2017 Oct; 79():326-335. PubMed ID: 28629025 [TBL] [Abstract][Full Text] [Related]
16. Heparan sulfate loaded polycaprolactone-hydroxyapatite scaffolds with 3D printing for bone defect repair. Liu Y; Wang R; Chen S; Xu Z; Wang Q; Yuan P; Zhou Y; Zhang Y; Chen J Int J Biol Macromol; 2020 Apr; 148():153-162. PubMed ID: 31935409 [TBL] [Abstract][Full Text] [Related]
17. Fabrication, characterization, and in vitro evaluation of poly(lactic acid glycolic acid)/nano-hydroxyapatite composite microsphere-based scaffolds for bone tissue engineering in rotating bioreactors. Lv Q; Nair L; Laurencin CT J Biomed Mater Res A; 2009 Dec; 91(3):679-91. PubMed ID: 19030184 [TBL] [Abstract][Full Text] [Related]
18. Fabrication of porous polycaprolactone/hydroxyapatite (PCL/HA) blend scaffolds using a 3D plotting system for bone tissue engineering. Park SA; Lee SH; Kim WD Bioprocess Biosyst Eng; 2011 May; 34(4):505-13. PubMed ID: 21170553 [TBL] [Abstract][Full Text] [Related]
19. Inner strut morphology is the key parameter in producing highly porous and mechanically stable poly(ε-caprolactone) scaffolds via selective laser sintering. Tortorici M; Gayer C; Torchio A; Cho S; Schleifenbaum JH; Petersen A Mater Sci Eng C Mater Biol Appl; 2021 Apr; 123():111986. PubMed ID: 33812614 [TBL] [Abstract][Full Text] [Related]
20. Improvement of dual-leached polycaprolactone porous scaffolds by incorporating with hydroxyapatite for bone tissue regeneration. Thadavirul N; Pavasant P; Supaphol P J Biomater Sci Polym Ed; 2014; 25(17):1986-2008. PubMed ID: 25291106 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]