BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 26242309)

  • 1. Reflective oxygen saturation monitoring at hypothenar and its validation by human hypoxia experiment.
    Guo T; Cao Z; Zhang Z; Li D; Yu M
    Biomed Eng Online; 2015 Aug; 14():76. PubMed ID: 26242309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A wrist worn SpO2 monitor with custom finger probe for motion artifact removal.
    Preejith SP; Ravindran AS; Hajare R; Joseph J; Sivaprakasam M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5777-5780. PubMed ID: 28269567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative evaluation of adaptive noise cancellation algorithms for minimizing motion artifacts in a forehead-mounted wearable pulse oximeter.
    Comtois G; Mendelson Y; Ramuka P
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1528-31. PubMed ID: 18002258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A motion-tolerant approach for monitoring SpO
    Fan F; Yan Y; Tang Y; Zhang H
    Comput Biol Med; 2017 Dec; 91():291-305. PubMed ID: 29102826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vivo investigation of ear canal pulse oximetry during hypothermia.
    Budidha K; Kyriacou PA
    J Clin Monit Comput; 2018 Feb; 32(1):97-107. PubMed ID: 28130679
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reflection-Boosted Wearable Ring-Type Pulse Oximeters for SpO
    Joo MG; Lim DH; Park KK; Baek J; Choi JM; Baac HW
    Biosensors (Basel); 2023 Jul; 13(7):. PubMed ID: 37504110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Photoplethysmographic Signal Isolated From an Additive Motion Artifact by Frequency Translation.
    Sinchai S; Kainan P; Wardkein P; Koseeyaporn J
    IEEE Trans Biomed Circuits Syst; 2018 Aug; 12(4):904-917. PubMed ID: 29994775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluation of key design parameters for mitigating motion artefact in the mobile reflectance PPG signal to improve estimation of arterial oxygenation.
    Kasbekar RS; Mendelson Y
    Physiol Meas; 2018 Jul; 39(7):075008. PubMed ID: 30051881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The human ear canal: investigation of its suitability for monitoring photoplethysmographs and arterial oxygen saturation.
    Budidha K; Kyriacou PA
    Physiol Meas; 2014 Feb; 35(2):111-28. PubMed ID: 24399082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enabling Continuous Wearable Reflectance Pulse Oximetry at the Sternum.
    Chan M; Ganti VG; Heller JA; Abdallah CA; Etemadi M; Inan OT
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940278
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pulse oximetry based on photoplethysmography imaging with red and green light : Calibratability and challenges.
    Moço A; Verkruysse W
    J Clin Monit Comput; 2021 Feb; 35(1):123-133. PubMed ID: 31893325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 2.3-5.7 μW Tri-Modal Self-Adaptive Photoplethysmography Sensor Interface IC for Heart Rate, SpO
    Wang P; Agarwala R; Ownby NB; Liu X; Calhoun BH
    IEEE Trans Biomed Circuits Syst; 2024 Jun; 18(3):564-579. PubMed ID: 38289849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Photoplethysmography Behind the Ear for Pulse Oximetry in Hypoxic Conditions with a Novel Device (SPYDR).
    Bradke B; Everman B
    Biosensors (Basel); 2020 Apr; 10(4):. PubMed ID: 32260393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photoplethysmograph signal reconstruction based on a novel hybrid motion artifact detection-reduction approach. Part I: Motion and noise artifact detection.
    Chong JW; Dao DK; Salehizadeh SM; McManus DD; Darling CE; Chon KH; Mendelson Y
    Ann Biomed Eng; 2014 Nov; 42(11):2238-50. PubMed ID: 25092422
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Wearable Pulse Oximeter With Wireless Communication and Motion Artifact Tailoring for Continuous Use.
    Chacon PJ; Limeng Pu ; da Costa TH; Young-Ho Shin ; Ghomian T; Shamkhalichenar H; Hsiao-Chun Wu ; Irving BA; Jin-Woo Choi
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1505-1513. PubMed ID: 30307850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In-Ear SpO
    Davies HJ; Williams I; Peters NS; Mandic DP
    Sensors (Basel); 2020 Aug; 20(17):. PubMed ID: 32872310
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved elimination of motion artifacts from a photoplethysmographic signal using a Kalman smoother with simultaneous accelerometry.
    Lee B; Han J; Baek HJ; Shin JH; Park KS; Yi WJ
    Physiol Meas; 2010 Dec; 31(12):1585-603. PubMed ID: 20980715
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of Contactless Pulse Oximetry.
    Verkruysse W; Bartula M; Bresch E; Rocque M; Meftah M; Kirenko I
    Anesth Analg; 2017 Jan; 124(1):136-145. PubMed ID: 27258081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of oesophageal photoplethysmographic signals and blood oxygen saturation measurements in cardiothoracic surgery patients.
    Kyriacou PA; Powell S; Langford RM; Jones DP
    Physiol Meas; 2002 Aug; 23(3):533-45. PubMed ID: 12214761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Estimating SpO
    Fan F; Yan Y; Zhao K; Long F; Zhang H; Feiyi Fan ; Yuepeng Yan ; Kun Zhao ; Fei Long ; Hao Zhang
    IEEE J Biomed Health Inform; 2018 Jul; 22(4):1075-1086. PubMed ID: 29969402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.