These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
98 related articles for article (PubMed ID: 26242387)
21. Poly(ester urethane)s consisting of poly[(R)-3-hydroxybutyrate] and poly(ethylene glycol) as candidate biomaterials: characterization and mechanical property study. Li X; Loh XJ; Wang K; He C; Li J Biomacromolecules; 2005; 6(5):2740-7. PubMed ID: 16153114 [TBL] [Abstract][Full Text] [Related]
22. Purification and characterization of levansucrases from Bacillus amyloliquefaciens in intra- and extracellular forms useful for the synthesis of levan and fructooligosaccharides. Tian F; Inthanavong L; Karboune S Biosci Biotechnol Biochem; 2011; 75(10):1929-38. PubMed ID: 21979064 [TBL] [Abstract][Full Text] [Related]
23. Derivatization of a new poly(ether urethane amide) containing chemically active sites. Stern T; Penhasi A; Cohn D Biomaterials; 1995 Jan; 16(1):17-23. PubMed ID: 7718687 [TBL] [Abstract][Full Text] [Related]
24. [Insight into surface structure and hemocompatibility of fluorinated poly(ether urethane)s and poly(ether urethane)s blends]. Tan H; Li J; Xie X; Guo M; Fu Q; Zhong Y Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2004 Aug; 21(4):566-9. PubMed ID: 15357433 [TBL] [Abstract][Full Text] [Related]
25. Degradation of polyester polyurethane by a newly isolated soil bacterium, Bacillus subtilis strain MZA-75. Shah Z; Krumholz L; Aktas DF; Hasan F; Khattak M; Shah AA Biodegradation; 2013 Nov; 24(6):865-77. PubMed ID: 23536219 [TBL] [Abstract][Full Text] [Related]
26. Inhibitory efficacy of cyclo(L-leucyl-L-prolyl) from mangrove rhizosphere bacterium-Bacillus amyloliquefaciens (MMS-50) toward cariogenic properties of Streptococcus mutans. Gowrishankar S; Poornima B; Pandian SK Res Microbiol; 2014 May; 165(4):278-89. PubMed ID: 24698790 [TBL] [Abstract][Full Text] [Related]
27. Poly(ether urethane) networks from renewable resources as candidate biomaterials: synthesis and characterization. Lligadas G; Ronda JC; Galià M; Cádiz V Biomacromolecules; 2007 Feb; 8(2):686-92. PubMed ID: 17291093 [TBL] [Abstract][Full Text] [Related]
28. PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers. Cohn D; Lando G; Sosnik A; Garty S; Levi A Biomaterials; 2006 Mar; 27(9):1718-27. PubMed ID: 16310849 [TBL] [Abstract][Full Text] [Related]
29. Synthesis of segmented poly(ether urethane)s and poly(ether urethane urea)s incorporating various side-chain or backbone functionalities. Simonovsky FI; Porter SC; Ratner BD J Biomater Sci Polym Ed; 2005; 16(2):267-84. PubMed ID: 15794490 [TBL] [Abstract][Full Text] [Related]
30. Synthesis, Characteristics and Potential Application of Poly(β-Amino Ester Urethane)-Based Multiblock Co-Polymers as an Injectable, Biodegradable and pH/Temperature-Sensitive Hydrogel System. Huynh CT; Nguyen MK; Jeong IK; Kim SW; Lee DS J Biomater Sci Polym Ed; 2012; 23(8):1091-106. PubMed ID: 21619729 [TBL] [Abstract][Full Text] [Related]
31. Biodegradable radiopaque iodinated poly(ester urethane)s containing poly(ε-caprolactone) blocks: synthesis, characterization, and biocompatibility. Sang L; Wei Z; Liu K; Wang X; Song K; Wang H; Qi M J Biomed Mater Res A; 2014 Apr; 102(4):1121-30. PubMed ID: 23640806 [TBL] [Abstract][Full Text] [Related]
32. The effect of phospholipids on the biodegradation of polyurethanes by lysosomal enzymes. Labow RS; Santerre JP; Waghray G J Biomater Sci Polym Ed; 1997; 8(10):779-95. PubMed ID: 9297603 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and antitumor activity of poly(ethylene glycol)s linked to 5-fluorouracil via a urethane or urea bond. Ouchi T; Hagihara Y; Takahashi K; Takano Y; Igarashi I Drug Des Discov; 1992; 9(1):93-105. PubMed ID: 1457699 [TBL] [Abstract][Full Text] [Related]
34. The effect of epsilon-caproyl/D,L-lactyl unit composition on the hydrolytic degradation of poly(D,L-lactide-ran-epsilon-caprolactone)-poly(ethylene glycol)-poly(D,L-lactide-ran-epsilon-caprolactone). Cho H; An J Biomaterials; 2006 Feb; 27(4):544-52. PubMed ID: 16099497 [TBL] [Abstract][Full Text] [Related]
35. Poly(carbonate urethane) and poly(ether urethane) biodegradation: in vivo studies. Christenson EM; Dadsetan M; Wiggins M; Anderson JM; Hiltner A J Biomed Mater Res A; 2004 Jun; 69(3):407-16. PubMed ID: 15127387 [TBL] [Abstract][Full Text] [Related]
36. Biocompatibility of poly(etherurethane urea) containing dehydroepiandrosterone. Collier T; Tan J; Shive M; Hasan S; Hiltner A; Anderson J J Biomed Mater Res; 1998 Aug; 41(2):192-201. PubMed ID: 9638523 [TBL] [Abstract][Full Text] [Related]
37. Biomechanical studies on aliphatic physically crosslinked poly(urethane urea) for blood contact applications. Thomas V; Muthu J J Mater Sci Mater Med; 2008 Jul; 19(7):2721-33. PubMed ID: 18305906 [TBL] [Abstract][Full Text] [Related]
38. Novel poly(urethane-aminoamides): an in vitro study of the interaction with heparin. Petrini P; Tanzi MC; Visai L; Casolini F; Speziale P J Biomater Sci Polym Ed; 2000; 11(4):353-65. PubMed ID: 10903035 [TBL] [Abstract][Full Text] [Related]
39. Thiol click modification of cyclic disulfide containing biodegradable polyurethane urea elastomers. Fang J; Ye SH; Wang J; Zhao T; Mo X; Wagner WR Biomacromolecules; 2015 May; 16(5):1622-33. PubMed ID: 25891476 [TBL] [Abstract][Full Text] [Related]
40. Trypsin-inspired poly(urethane-urea)s based on poly-lysine oligomer segment. Gu Z; Wang F; Lu H; Wang X; Zheng Z J Biomater Sci Polym Ed; 2015; 26(5):311-21. PubMed ID: 25584962 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]