These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 26242622)

  • 1. Formation of Foam-like Microstructural Carbon Material by Carbonization of Porous Coordination Polymers through a Ligand-Assisted Foaming Process.
    Kongpatpanich K; Horike S; Fujiwara Y; Ogiwara N; Nishihara H; Kitagawa S
    Chemistry; 2015 Sep; 21(38):13278-83. PubMed ID: 26242622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon.
    Hu M; Reboul J; Furukawa S; Torad NL; Ji Q; Srinivasu P; Ariga K; Kitagawa S; Yamauchi Y
    J Am Chem Soc; 2012 Feb; 134(6):2864-7. PubMed ID: 22280024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance supercapacitor based on nitrogen-doped porous carbon derived from zinc(II)-bis(8-hydroxyquinoline) coordination polymer.
    Chen XY; Xie DH; Chen C; Liu JW
    J Colloid Interface Sci; 2013 Mar; 393():241-8. PubMed ID: 23137906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Open-pore biodegradable foams prepared via gas foaming and microparticulate templating.
    Salerno A; Iannace S; Netti PA
    Macromol Biosci; 2008 Jul; 8(7):655-64. PubMed ID: 18350540
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Molecular Foaming and Activation Strategy to Porous N-Doped Carbon Foams for Supercapacitors and CO
    Zhou M; Lin Y; Xia H; Wei X; Yao Y; Wang X; Wu Z
    Nanomicro Lett; 2020 Feb; 12(1):58. PubMed ID: 34138265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tailoring of Hierarchical Porous Freeze Foam Structures.
    Werner D; Maier J; Kaube N; Geske V; Behnisch T; Ahlhelm M; Moritz T; Michaelis A; Gude M
    Materials (Basel); 2022 Jan; 15(3):. PubMed ID: 35160783
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Liquid foam templating - A route to tailor-made polymer foams.
    Andrieux S; Quell A; Stubenrauch C; Drenckhan W
    Adv Colloid Interface Sci; 2018 Jun; 256():276-290. PubMed ID: 29728156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Macroscale Fabrication of Lightweight and Strong Porous Carbon Foams through Template-Coating Pair Design.
    Suresh A; Rowan SJ; Liu C
    Adv Mater; 2023 Mar; 35(9):e2206416. PubMed ID: 36527732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of Hollow Microporous Carbon Spheres from Hyper-Crosslinked Microporous Polymers.
    Wang K; Huang L; Razzaque S; Jin S; Tan B
    Small; 2016 Jun; 12(23):3134-42. PubMed ID: 27145206
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors controlling the formation and stability of foams used as precursors of porous materials.
    Lesov I; Tcholakova S; Denkov N
    J Colloid Interface Sci; 2014 Jul; 426():9-21. PubMed ID: 24863759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactive effects of pore size control and carbonization temperatures on supercapacitive behaviors of porous carbon/carbon nanotube composites.
    Kim JI; Rhee KY; Park SJ
    J Colloid Interface Sci; 2012 Jul; 377(1):307-12. PubMed ID: 22494688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers.
    Su P; Jiang L; Zhao J; Yan J; Li C; Yang Q
    Chem Commun (Camb); 2012 Sep; 48(70):8769-71. PubMed ID: 22842469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open-Celled Foams from Polyethersulfone/Poly(Ethylene Glycol) Blends Using Foam Extrusion.
    Raje A; Georgopanos P; Koll J; Lillepärg J; Handge UA; Abetz V
    Polymers (Basel); 2022 Dec; 15(1):. PubMed ID: 36616468
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multifunctional Stiff Carbon Foam Derived from Bread.
    Yuan Y; Ding Y; Wang C; Xu F; Lin Z; Qin Y; Li Y; Yang M; He X; Peng Q; Li Y
    ACS Appl Mater Interfaces; 2016 Jul; 8(26):16852-61. PubMed ID: 27295106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amorphous Polymers' Foaming and Blends with Organic Foaming-Aid Structured Additives in Supercritical CO
    Haurat M; Dumon M
    Molecules; 2020 Nov; 25(22):. PubMed ID: 33202668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fabrication of diverse carbon forms and their reversed applications in hexane/water separation.
    Xie R; Fang Z; Yan J; Wang W; Cao X; Qiu X
    Water Sci Technol; 2020 Oct; 82(7):1296-1303. PubMed ID: 33079710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phthalonitrile-Based Carbon Foam with High Specific Mechanical Strength and Superior Electromagnetic Interference Shielding Performance.
    Zhang L; Liu M; Roy S; Chu EK; See KY; Hu X
    ACS Appl Mater Interfaces; 2016 Mar; 8(11):7422-30. PubMed ID: 26910405
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile one-pot synthesis of highly porous carbon foams for high-performance supercapacitors using template-free direct pyrolysis.
    Wang C; O'Connell MJ; Chan CK
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8952-60. PubMed ID: 25834933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of the Foam Development Stages by Non-Destructive Testing Technology Using the Freeze Foaming Process.
    Maier J; Behnisch T; Geske V; Ahlhelm M; Werner D; Moritz T; Michaelis A; Gude M
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30563235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hollow, spherical nitrogen-rich porous carbon shells obtained from a porous organic framework for the supercapacitor.
    Liu X; Zhou L; Zhao Y; Bian L; Feng X; Pu Q
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10280-7. PubMed ID: 24053493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.