BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26242716)

  • 1. DOSIMETRIC CONSEQUENCES OF USING CONTRAST-ENHANCED COMPUTED TOMOGRAPHIC IMAGES FOR INTENSITY-MODULATED STEREOTACTIC BODY RADIOTHERAPY PLANNING.
    Yoshikawa H; Roback DM; Larue SM; Nolan MW
    Vet Radiol Ultrasound; 2015; 56(6):687-95. PubMed ID: 26242716
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of using intravenous contrast-enhanced computed tomography (CT) scans in lung cancer treatment planning.
    Xiao J; Zhang H; Gong Y; Fu Y; Tang B; Wang S; Jiang Q; Li P
    Radiother Oncol; 2010 Jul; 96(1):73-7. PubMed ID: 20347496
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of computed tomography contrast agent on radiotherapy dose calculation for pancreatic carcinoma: A dosimetric study based on tomotherapy and volumetric-modulated arc therapy techniques.
    Zhu F; Wu W; Zhu F; Wang Y; Wang Y; Xia T
    Med Dosim; 2017 Winter; 42(4):317-325. PubMed ID: 28818321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dosimetric impact of different CT datasets for stereotactic treatment planning using 3D conformal radiotherapy or volumetric modulated arc therapy.
    Oechsner M; Odersky L; Berndt J; Combs SE; Wilkens JJ; Duma MN
    Radiat Oncol; 2015 Dec; 10():249. PubMed ID: 26626865
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessment of Monte Carlo algorithm for compliance with RTOG 0915 dosimetric criteria in peripheral lung cancer patients treated with stereotactic body radiotherapy.
    Pokhrel D; Sood S; Badkul R; Jiang H; McClinton C; Lominska C; Kumar P; Wang F
    J Appl Clin Med Phys; 2016 May; 17(3):277-293. PubMed ID: 27167284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatic arterial phase and portal venous phase computed tomography for dose calculation of stereotactic body radiation therapy plans in liver cancer: a dosimetric comparison study.
    Xiao J; Li Y; Jiang Q; Sun L; Henderson F; Wang Y; Jiang X; Li G; Chen N
    Radiat Oncol; 2013 Nov; 8():264. PubMed ID: 24209300
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in target volume during irradiation of canine intranasal tumors can significantly impact radiation dosimetry.
    Yoshikawa H; Nolan MW
    Vet Radiol Ultrasound; 2019 Sep; 60(5):594-604. PubMed ID: 31250950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A comparison of two dose calculation algorithms-anisotropic analytical algorithm and Acuros XB-for radiation therapy planning of canine intranasal tumors.
    Nagata K; Pethel TD
    Vet Radiol Ultrasound; 2017 Jul; 58(4):479-485. PubMed ID: 28464564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of intravenous contrast agent on dose calculations of intensity modulated radiation therapy plans for head and neck cancer.
    Choi Y; Kim JK; Lee HS; Hur WJ; Hong YS; Park S; Ahn K; Cho H
    Radiother Oncol; 2006 Nov; 81(2):158-62. PubMed ID: 17050020
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of bladder contrast on dose calculation in volumetric modulated arc therapy planning in patients treated for postoperative prostate cancer.
    Ercan T; İğdem Ş; Alço G
    Jpn J Radiol; 2016 May; 34(5):376-82. PubMed ID: 26842552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dosimetric benefits of hemigland stereotactic body radiotherapy for prostate cancer: implications for focal therapy.
    Kishan AU; Park SJ; King CR; Roberts K; Kupelian PA; Steinberg ML; Kamrava M
    Br J Radiol; 2015; 88(1056):20150658. PubMed ID: 26463234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined PET/CT for IMRT treatment planning of NSCLC: contrast-enhanced CT images for Monte Carlo dose calculation.
    Mönnich D; Lächelt S; Beyer T; Werner MK; Thorwarth D
    Phys Med; 2013 Nov; 29(6):644-9. PubMed ID: 22975430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nasal angiofibroma treatment outcome using intensity-modulated radiation therapy in a dog.
    L Ashworth H; K Flesner B; J Norquest C; A Maitz C
    Vet Radiol Ultrasound; 2021 Jul; 62(4):e40-e43. PubMed ID: 33634903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using biologically based objectives to optimize boost intensity-modulated radiation therapy planning for brainstem tumors in dogs.
    Meier V; Besserer J; Rohrer Bley C
    Vet Radiol Ultrasound; 2020 Jan; 61(1):77-84. PubMed ID: 31600027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Feasibility and Efficiency of Volumetric Modulated Arc Therapy-Based Breath Control Stereotactic Body Radiotherapy for Liver Tumors.
    Qiu JJ; Ge W; Zhang L; Yao Y; Zheng X
    Technol Cancer Res Treat; 2016 Oct; 15(5):674-82. PubMed ID: 26206766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional image-guided stereotactic body radiation therapy planning for patients with hepatocellular carcinoma.
    Tsegmed U; Kimura T; Nakashima T; Nakamura Y; Higaki T; Imano N; Doi Y; Kenjo M; Ozawa S; Murakami Y; Awai K; Nagata Y
    Med Dosim; 2017 Summer; 42(2):97-103. PubMed ID: 28433483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of adaptive radiotherapy techniques for external radiation therapy of canine bladder cancer.
    Nieset JR; Harmon JF; Johnson TE; Larue SM
    Vet Radiol Ultrasound; 2014; 55(6):644-50. PubMed ID: 24832931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study.
    Chatterjee S; Frew J; Mott J; McCallum H; Stevenson P; Maxwell R; Wilsdon J; Kelly CG
    Clin Oncol (R Coll Radiol); 2012 Dec; 24(10):e173-9. PubMed ID: 23079100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of intravenous contrast used in computed tomography on radiation dose to carotid arteries and thyroid in intensity-modulated radiation therapy planning for nasopharyngeal carcinoma.
    Lee VHF; Ng SCY; Kwong DLW; Lam KO; Leung TW
    Med Dosim; 2017 Summer; 42(2):137-144. PubMed ID: 28392229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential for intensity-modulated radiation therapy to permit dose escalation for canine nasal cancer.
    Vaudaux C; Schneider U; Kaser-Hotz B
    Vet Radiol Ultrasound; 2007; 48(5):475-81. PubMed ID: 17899986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.