These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
386 related articles for article (PubMed ID: 262428)
1. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. II. Suppression of tetraphenylborate conductance and changes of interfacial potentials. Smejtek P; Paulis-Illangasekare M Biophys J; 1979 Jun; 26(3):467-87. PubMed ID: 262428 [TBL] [Abstract][Full Text] [Related]
2. Modification of ion transport in lipid bilayer membranes in the presence of 2,4-dichlorophenoxyacetic acid. I. Enhancement of cationic conductance and changes of the kinetics of nonactin-mediated transport of potassium. Smejtek P; Paulis-Illangasekare M Biophys J; 1979 Jun; 26(3):441-66. PubMed ID: 263687 [TBL] [Abstract][Full Text] [Related]
3. Effect of 3-phenylindole on lipophilic ion and carrier-mediated ion transport across bilayer lipid membranes. Sinha BA; Smejtek P J Membr Biol; 1983; 71(1-2):119-30. PubMed ID: 6687614 [TBL] [Abstract][Full Text] [Related]
4. Potential energy barriers to ion transport within lipid bilayers. Studies with tetraphenylborate. Andersen OS; Fuchs M Biophys J; 1975 Aug; 15(8):795-830. PubMed ID: 1148364 [TBL] [Abstract][Full Text] [Related]
5. Electrostatic interactions among hydrophobic ions in lipid bilayer membranes. Andersen OS; Feldberg S; Nakadomari H; Levy S; McLaughlin S Biophys J; 1978 Jan; 21(1):35-70. PubMed ID: 620077 [TBL] [Abstract][Full Text] [Related]
6. Modification on ion transport in lipid bilayer membranes by the insecticides DDT and DDE. Wolff D; Bull R Biochim Biophys Acta; 1982 May; 688(1):138-44. PubMed ID: 7093269 [TBL] [Abstract][Full Text] [Related]
7. Ion transport across bilayer lipid membranes in the presence of tetraphenylborate. Naruse T; Yamada Y; Sowa K; Kitazumi Y; Shirai O Anal Sci; 2022 Apr; 38(4):683-688. PubMed ID: 35286650 [TBL] [Abstract][Full Text] [Related]
8. Phloretin-induced changes in ion transport across lipid bilayer membranes. Melnik E; Latorre R; Hall JE; Tosteson DC J Gen Physiol; 1977 Feb; 69(2):243-57. PubMed ID: 576427 [TBL] [Abstract][Full Text] [Related]
9. Photogating of ionic currents across lipid bilayers. Electrostatics of ions and dipoles inside the membrane. Mauzerall DC; Drain CM Biophys J; 1992 Dec; 63(6):1544-55. PubMed ID: 1489912 [TBL] [Abstract][Full Text] [Related]
10. Effect of gangliosides on phospholipid bilayers: a study with the lipophilic ions relaxation method. Usai C; Robello M; Gambale F; Marchetti C J Membr Biol; 1984; 82(1):15-23. PubMed ID: 6502698 [TBL] [Abstract][Full Text] [Related]
11. Transport kinetics of hydrophobic ions in lipid bilayer membranes. Charge-pulse relaxation studies. Benz R; Läuger P; Janko K Biochim Biophys Acta; 1976 Dec; 455(3):701-20. PubMed ID: 999935 [TBL] [Abstract][Full Text] [Related]
12. Adsorption to dipalmitoylphosphatidylcholine membranes in gel and fluid state: pentachlorophenolate, dipicrylamine, and tetraphenylborate. Smejtek P; Wang SR Biophys J; 1990 Nov; 58(5):1285-94. PubMed ID: 2291945 [TBL] [Abstract][Full Text] [Related]
13. Millimeter microwave effect on ion transport across lipid bilayer membranes. Alekseev SI; Ziskin MC Bioelectromagnetics; 1995; 16(2):124-31. PubMed ID: 7541990 [TBL] [Abstract][Full Text] [Related]
14. Effects of hydrostatic pressure on lipid bilayer membranes. I. Influence on membrane thickness and activation volumes of lipophilic ion transport. Benz R; Conti F Biophys J; 1986 Jul; 50(1):91-8. PubMed ID: 3730509 [TBL] [Abstract][Full Text] [Related]
15. A laser-T-jump study of the adsorption of dipolar molecules to planar lipid membranes. I. 2,4-dichlorophenoxyacetic acid. Awiszus R; Stark G Eur Biophys J; 1988; 15(5):299-310. PubMed ID: 3366096 [TBL] [Abstract][Full Text] [Related]
16. Effect of the anesthetics benzyl alcohol and chloroform on bilayers made from monolayers. Reyes J; Latorre R Biophys J; 1979 Nov; 28(2):259-79. PubMed ID: 262550 [TBL] [Abstract][Full Text] [Related]
19. Fluorescent styryl dyes of the RH series affect a potential drop on the membrane/solution boundary. Malkov DY; Sokolov VS Biochim Biophys Acta; 1996 Jan; 1278(2):197-204. PubMed ID: 8593277 [TBL] [Abstract][Full Text] [Related]
20. Structural requirement for the rapid movement of charged molecules across membranes. Experiments with tetraphenylborate analogues. Benz R Biophys J; 1988 Jul; 54(1):25-33. PubMed ID: 3416031 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]