These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26243052)

  • 41. All-Organic Rechargeable Battery with Reversibility Supported by "Water-in-Salt" Electrolyte.
    Dong X; Yu H; Ma Y; Bao JL; Truhlar DG; Wang Y; Xia Y
    Chemistry; 2017 Feb; 23(11):2560-2565. PubMed ID: 28075043
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Weavable, Conductive Yarn-Based NiCo//Zn Textile Battery with High Energy Density and Rate Capability.
    Huang Y; Ip WS; Lau YY; Sun J; Zeng J; Yeung NSS; Ng WS; Li H; Pei Z; Xue Q; Wang Y; Yu J; Hu H; Zhi C
    ACS Nano; 2017 Sep; 11(9):8953-8961. PubMed ID: 28813141
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Electrospun FeS2@Carbon Fiber Electrode as a High Energy Density Cathode for Rechargeable Lithium Batteries.
    Zhu Y; Fan X; Suo L; Luo C; Gao T; Wang C
    ACS Nano; 2016 Jan; 10(1):1529-38. PubMed ID: 26700975
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Aqueous Rechargeable Alkaline CoxNi2-xS2/TiO2 Battery.
    Liu J; Wang J; Ku Z; Wang H; Chen S; Zhang L; Lin J; Shen ZX
    ACS Nano; 2016 Jan; 10(1):1007-16. PubMed ID: 26593375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Rechargeable Sodium-Ion Battery: High-Capacity Ammonium Vanadate Cathode with Enhanced Stability at High Rate.
    Sarkar A; Sarkar S; Sarkar T; Kumar P; Bharadwaj MD; Mitra S
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17044-53. PubMed ID: 26189927
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Sodium/Lithium storage behavior of antimony hollow nanospheres for rechargeable batteries.
    Hou H; Jing M; Yang Y; Zhu Y; Fang L; Song W; Pan C; Yang X; Ji X
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16189-96. PubMed ID: 25140456
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Rechargeable Li/Cl
    Liang P; Zhu G; Huang CL; Li YY; Sun H; Yuan B; Wu SC; Li J; Wang F; Hwang BJ; Dai H
    Adv Mater; 2024 Feb; 36(7):e2307192. PubMed ID: 37804146
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Environmental Screening of Electrode Materials for a Rechargeable Aluminum Battery with an AlCl₃/EMIMCl Electrolyte.
    Ellingsen LA; Holland A; Drillet JF; Peters W; Eckert M; Concepcion C; Ruiz O; Colin JF; Knipping E; Pan Q; Wills RGA; Majeau-Bettez G
    Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29865218
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The Conversion Chemistry for High-Energy Cathodes of Rechargeable Sodium Batteries.
    Lee Y; Yoo JK; Jo JH; Park H; Jo CH; Ko W; Yashiro H; Myung ST; Kim J
    ACS Nano; 2019 Oct; 13(10):11707-11716. PubMed ID: 31600049
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Lithium-Organic Primary Battery.
    Sun P; Bai P; Chen Z; Su H; Yang J; Xu K; Xu Y
    Small; 2020 Jan; 16(3):e1906462. PubMed ID: 31867886
    [TBL] [Abstract][Full Text] [Related]  

  • 52. High-Performance All-Inorganic Solid-State Sodium-Sulfur Battery.
    Yue J; Han F; Fan X; Zhu X; Ma Z; Yang J; Wang C
    ACS Nano; 2017 May; 11(5):4885-4891. PubMed ID: 28459546
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Dual-Graphene Rechargeable Sodium Battery.
    Wang F; Liu Z; Zhang P; Li H; Sheng W; Zhang T; Jordan R; Wu Y; Zhuang X; Feng X
    Small; 2017 Dec; 13(47):. PubMed ID: 29076650
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Rechargeable Ni-Li battery integrated aqueous/nonaqueous system.
    Li H; Wang Y; Na H; Liu H; Zhou H
    J Am Chem Soc; 2009 Oct; 131(42):15098-9. PubMed ID: 19803514
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Rechargeable Li-CO
    Li C; Guo Z; Yang B; Liu Y; Wang Y; Xia Y
    Angew Chem Int Ed Engl; 2017 Jul; 56(31):9126-9130. PubMed ID: 28612470
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Li2S Nanocrystals Confined in Free-Standing Carbon Paper for High Performance Lithium-Sulfur Batteries.
    Wu M; Cui Y; Fu Y
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21479-86. PubMed ID: 26349017
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Poly(2,5-dimercapto-1,3,4-thiadiazole) as a cathode for rechargeable lithium batteries with dramatically improved performance.
    Gao J; Lowe MA; Conte S; Burkhardt SE; Abruña HD
    Chemistry; 2012 Jul; 18(27):8521-6. PubMed ID: 22644940
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis-microstructure-performance relationship of layered transition metal oxides as cathode for rechargeable sodium batteries prepared by high-temperature calcination.
    Xie M; Luo R; Lu J; Chen R; Wu F; Wang X; Zhan C; Wu H; Albishri HM; Al-Bogami AS; El-Hady DA; Amine K
    ACS Appl Mater Interfaces; 2014 Oct; 6(19):17176-83. PubMed ID: 25192293
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Evolution of strategies for modern rechargeable batteries.
    Goodenough JB
    Acc Chem Res; 2013 May; 46(5):1053-61. PubMed ID: 22746097
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.