BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26243542)

  • 1. Determination of the Cytosolic NADPH/NADP Ratio in Saccharomyces cerevisiae using Shikimate Dehydrogenase as Sensor Reaction.
    Zhang J; ten Pierick A; van Rossum HM; Seifar RM; Ras C; Daran JM; Heijnen JJ; Wahl SA
    Sci Rep; 2015 Aug; 5():12846. PubMed ID: 26243542
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the cytosolic free NAD/NADH ratio in Saccharomyces cerevisiae under steady-state and highly dynamic conditions.
    Canelas AB; van Gulik WM; Heijnen JJ
    Biotechnol Bioeng; 2008 Jul; 100(4):734-43. PubMed ID: 18383140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A fast sensor for in vivo quantification of cytosolic phosphate in Saccharomyces cerevisiae.
    Zhang J; Sassen T; ten Pierick A; Ras C; Heijnen JJ; Wahl SA
    Biotechnol Bioeng; 2015 May; 112(5):1033-46. PubMed ID: 25502731
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the in vivo NAD:NADH ratio in Saccharomyces cerevisiae under anaerobic conditions, using alcohol dehydrogenase as sensor reaction.
    Bekers KM; Heijnen JJ; van Gulik WM
    Yeast; 2015 Aug; 32(8):541-57. PubMed ID: 26059529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A constraint-based model analysis of the metabolic consequences of increased NADPH oxidation in Saccharomyces cerevisiae.
    Celton M; Goelzer A; Camarasa C; Fromion V; Dequin S
    Metab Eng; 2012 Jul; 14(4):366-79. PubMed ID: 22709677
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sources of NADPH in yeast vary with carbon source.
    Minard KI; McAlister-Henn L
    J Biol Chem; 2005 Dec; 280(48):39890-6. PubMed ID: 16179340
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intracellular NADPH levels affect the oligomeric state of the glucose 6-phosphate dehydrogenase.
    Saliola M; Tramonti A; Lanini C; Cialfi S; De Biase D; Falcone C
    Eukaryot Cell; 2012 Dec; 11(12):1503-11. PubMed ID: 23064253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic impact of redox cofactor perturbations in Saccharomyces cerevisiae.
    Hou J; Lages NF; Oldiges M; Vemuri GN
    Metab Eng; 2009; 11(4-5):253-61. PubMed ID: 19446033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sources of NADPH and expression of mammalian NADP+-specific isocitrate dehydrogenases in Saccharomyces cerevisiae.
    Minard KI; Jennings GT; Loftus TM; Xuan D; McAlister-Henn L
    J Biol Chem; 1998 Nov; 273(47):31486-93. PubMed ID: 9813062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ¹³C-based metabolic flux analysis of Saccharomyces cerevisiae with a reduced Crabtree effect.
    Kajihata S; Matsuda F; Yoshimi M; Hayakawa K; Furusawa C; Kanda A; Shimizu H
    J Biosci Bioeng; 2015 Aug; 120(2):140-4. PubMed ID: 25634548
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparative transcriptomic, fluxomic and metabolomic analysis of the response of Saccharomyces cerevisiae to increases in NADPH oxidation.
    Celton M; Sanchez I; Goelzer A; Fromion V; Camarasa C; Dequin S
    BMC Genomics; 2012 Jul; 13():317. PubMed ID: 22805527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of a cytoplasmic transhydrogenase in Saccharomyces cerevisiae results in formation of 2-oxoglutarate due to depletion of the NADPH pool.
    Nissen TL; Anderlund M; Nielsen J; Villadsen J; Kielland-Brandt MC
    Yeast; 2001 Jan; 18(1):19-32. PubMed ID: 11124698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two mechanisms for oxidation of cytosolic NADPH by Kluyveromyces lactis mitochondria.
    Overkamp KM; Bakker BM; Steensma HY; van Dijken JP; Pronk JT
    Yeast; 2002 Jul; 19(10):813-24. PubMed ID: 12112236
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conversion of quinate to 3-dehydroshikimate by Ca-alginate-immobilized membrane of Gluconobacter oxydans IFO 3244 and subsequent asymmetric reduction of 3-dehydroshikimate to shikimate by immobilized cytoplasmic NADP-shikimate dehydrogenase.
    Adachi O; Ano Y; Shinagawa E; Yakushi T; Matsushita K
    Biosci Biotechnol Biochem; 2010; 74(12):2438-44. PubMed ID: 21150112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineering redox cofactor regeneration for improved pentose fermentation in Saccharomyces cerevisiae.
    Verho R; Londesborough J; Penttilä M; Richard P
    Appl Environ Microbiol; 2003 Oct; 69(10):5892-7. PubMed ID: 14532041
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential effects of the NADPH/NADP+ ratio on the activities of hexose-6-phosphate dehydrogenase and glucose-6-phosphate dehydrogenase.
    Oka K; Takahashi T; Hori SH
    Biochim Biophys Acta; 1981 Dec; 662(2):318-25. PubMed ID: 7317444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural.
    Jordan DB; Braker JD; Bowman MJ; Vermillion KE; Moon J; Liu ZL
    Biochim Biophys Acta; 2011 Dec; 1814(12):1686-94. PubMed ID: 21890004
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain.
    Bouzon M; Döring V; Dubois I; Berger A; Stoffel GMM; Calzadiaz Ramirez L; Meyer SN; Fouré M; Roche D; Perret A; Erb TJ; Bar-Even A; Lindner SN
    mBio; 2021 Aug; 12(4):e0032921. PubMed ID: 34399608
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli--modeling the physiological production of reduced cofactors.
    Olavarría K; Valdés D; Cabrera R
    FEBS J; 2012 Jul; 279(13):2296-309. PubMed ID: 22519976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The crystal structure of shikimate dehydrogenase (AroE) reveals a unique NADPH binding mode.
    Ye S; Von Delft F; Brooun A; Knuth MW; Swanson RV; McRee DE
    J Bacteriol; 2003 Jul; 185(14):4144-51. PubMed ID: 12837789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.