BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 26243777)

  • 1. A novel mechanism for NETosis provides antimicrobial defense at the oral mucosa.
    Mohanty T; Sjögren J; Kahn F; Abu-Humaidan AH; Fisker N; Assing K; Mörgelin M; Bengtsson AA; Borregaard N; Sørensen OE
    Blood; 2015 Oct; 126(18):2128-37. PubMed ID: 26243777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oral NETs: the deadly kiss.
    Hartl D
    Blood; 2015 Oct; 126(18):2079-80. PubMed ID: 26516216
    [No Abstract]   [Full Text] [Related]  

  • 3. JNK Activation Turns on LPS- and Gram-Negative Bacteria-Induced NADPH Oxidase-Dependent Suicidal NETosis.
    Khan MA; Farahvash A; Douda DN; Licht JC; Grasemann H; Sweezey N; Palaniyar N
    Sci Rep; 2017 Jun; 7(1):3409. PubMed ID: 28611461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypertonic Saline Suppresses NADPH Oxidase-Dependent Neutrophil Extracellular Trap Formation and Promotes Apoptosis.
    Nadesalingam A; Chen JHK; Farahvash A; Khan MA
    Front Immunol; 2018; 9():359. PubMed ID: 29593709
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Skin and Systemic Inflammation in Schnitzler's Syndrome Are Associated With Neutrophil Extracellular Trap Formation.
    Bonnekoh H; Scheffel J; Wu J; Hoffmann S; Maurer M; Krause K
    Front Immunol; 2019; 10():546. PubMed ID: 30967871
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does Pioglitazone Lead to Neutrophil Extracellular Traps Formation in Chronic Granulomatous Disease Patients?
    Hule GP; Bargir UA; Kulkarni M; Kambli P; Taur P; Desai M; Madkaikar MR
    Front Immunol; 2019; 10():1739. PubMed ID: 31428088
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Díaz-Godínez C; Fonseca Z; Néquiz M; Laclette JP; Rosales C; Carrero JC
    Front Cell Infect Microbiol; 2018; 8():184. PubMed ID: 29922599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of NADPH oxidase in modulating neutrophil effector responses.
    Zeng MY; Miralda I; Armstrong CL; Uriarte SM; Bagaitkar J
    Mol Oral Microbiol; 2019 Apr; 34(2):27-38. PubMed ID: 30632295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neutrophil elastase-deficient mice form neutrophil extracellular traps in an experimental model of deep vein thrombosis.
    Martinod K; Witsch T; Farley K; Gallant M; Remold-O'Donnell E; Wagner DD
    J Thromb Haemost; 2016 Mar; 14(3):551-8. PubMed ID: 26712312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neutrophils contribute to vasculitis by increased release of neutrophil extracellular traps in Behçet's disease.
    Safi R; Kallas R; Bardawil T; Mehanna CJ; Abbas O; Hamam R; Uthman I; Kibbi AG; Nassar D
    J Dermatol Sci; 2018 Nov; 92(2):143-150. PubMed ID: 30237006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Short-Term Fever-Range Hyperthermia Accelerates NETosis and Reduces Pro-inflammatory Cytokine Secretion by Human Neutrophils.
    Keitelman IA; Sabbione F; Shiromizu CM; Giai C; Fuentes F; Rosso D; Ledo C; Miglio Rodriguez M; Guzman M; Geffner JR; Galletti J; Jancic C; Gómez MI; Trevani AS
    Front Immunol; 2019; 10():2374. PubMed ID: 31681277
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A perspective on NETosis in diabetes and cardiometabolic disorders.
    Fadini GP; Menegazzo L; Scattolini V; Gintoli M; Albiero M; Avogaro A
    Nutr Metab Cardiovasc Dis; 2016 Jan; 26(1):1-8. PubMed ID: 26719220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Triggering NETosis via protease-activated receptor (PAR)-2 signaling as a mechanism of hijacking neutrophils function for pathogen benefits.
    Bryzek D; Ciaston I; Dobosz E; Gasiorek A; Makarska A; Sarna M; Eick S; Puklo M; Lech M; Potempa B; Potempa J; Koziel J
    PLoS Pathog; 2019 May; 15(5):e1007773. PubMed ID: 31107907
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Muñoz-Caro T; Conejeros I; Zhou E; Pikhovych A; Gärtner U; Hermosilla C; Kulke D; Taubert A
    Front Immunol; 2018; 9():968. PubMed ID: 29867950
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anti-β2GPI/β2GPI induces human neutrophils to generate NETs by relying on ROS.
    You Y; Liu Y; Li F; Mu F; Zha C
    Cell Biochem Funct; 2019 Mar; 37(2):56-61. PubMed ID: 30701573
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Classical ROS-dependent and early/rapid ROS-independent release of Neutrophil Extracellular Traps triggered by Leishmania parasites.
    Rochael NC; Guimarães-Costa AB; Nascimento MT; DeSouza-Vieira TS; Oliveira MP; Garcia e Souza LF; Oliveira MF; Saraiva EM
    Sci Rep; 2015 Dec; 5():18302. PubMed ID: 26673780
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physiological Stimuli Induce PAD4-Dependent, ROS-Independent NETosis, With Early and Late Events Controlled by Discrete Signaling Pathways.
    Tatsiy O; McDonald PP
    Front Immunol; 2018; 9():2036. PubMed ID: 30279690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neutrophil extracellular traps release induced by Leishmania: role of PI3Kγ, ERK, PI3Kσ, PKC, and [Ca2+].
    DeSouza-Vieira T; Guimarães-Costa A; Rochael NC; Lira MN; Nascimento MT; Lima-Gomez PS; Mariante RM; Persechini PM; Saraiva EM
    J Leukoc Biol; 2016 Oct; 100(4):801-810. PubMed ID: 27154356
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neutrophil Extracellular Traps in Host Defense.
    Burgener SS; Schroder K
    Cold Spring Harb Perspect Biol; 2020 Jul; 12(7):. PubMed ID: 31767647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Serum and Serum Albumin Inhibit
    Neubert E; Senger-Sander SN; Manzke VS; Busse J; Polo E; Scheidmann SEF; Schön MP; Kruss S; Erpenbeck L
    Front Immunol; 2019; 10():12. PubMed ID: 30733715
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.