These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 26243885)
1. An efficient protocol towards site-specifically clickable nanobodies in high yield: cytoplasmic expression in Escherichia coli combined with intein-mediated protein ligation. Ta DT; Redeker ES; Billen B; Reekmans G; Sikulu J; Noben JP; Guedens W; Adriaensens P Protein Eng Des Sel; 2015 Oct; 28(10):351-63. PubMed ID: 26243885 [TBL] [Abstract][Full Text] [Related]
2. Site-Selective Functionalization of Nanobodies Using Intein-Mediated Protein Ligation for Innovative Bioconjugation. Graulus GJ; Ta DT; Tran H; Hansen R; Billen B; Royackers E; Noben JP; Devoogdt N; Muyldermans S; Guedens W; Adriaensens P Methods Mol Biol; 2019; 2033():117-130. PubMed ID: 31332751 [TBL] [Abstract][Full Text] [Related]
3. Cytoplasmic versus periplasmic expression of site-specifically and bioorthogonally functionalized nanobodies using expressed protein ligation. Billen B; Vincke C; Hansen R; Devoogdt N; Muyldermans S; Adriaensens P; Guedens W Protein Expr Purif; 2017 May; 133():25-34. PubMed ID: 28238765 [TBL] [Abstract][Full Text] [Related]
4. Enhanced Biosensor Platforms for Detecting the Atherosclerotic Biomarker VCAM1 Based on Bioconjugation with Uniformly Oriented VCAM1-Targeting Nanobodies. Ta DT; Guedens W; Vranken T; Vanschoenbeek K; Steen Redeker E; Michiels L; Adriaensens P Biosensors (Basel); 2016 Jul; 6(3):. PubMed ID: 27399790 [TBL] [Abstract][Full Text] [Related]
5. Nanobody click chemistry for convenient site-specific fluorescent labelling, single step immunocytochemistry and delivery into living cells by photoporation and live cell imaging. Hebbrecht T; Liu J; Zwaenepoel O; Boddin G; Van Leene C; Decoene K; Madder A; Braeckmans K; Gettemans J N Biotechnol; 2020 Nov; 59():33-43. PubMed ID: 32659511 [TBL] [Abstract][Full Text] [Related]
6. High yield purification of nanobodies from the periplasm of E. coli as fusions with the maltose binding protein. Salema V; Fernández LÁ Protein Expr Purif; 2013 Sep; 91(1):42-8. PubMed ID: 23856605 [TBL] [Abstract][Full Text] [Related]
7. A novel silk fibroin protein-based fusion system for enhancing the expression of nanobodies in Escherichia coli. Yu J; Guo Y; Gu Y; Fan X; Li F; Song H; Nian R; Liu W Appl Microbiol Biotechnol; 2022 Mar; 106(5-6):1967-1977. PubMed ID: 35243528 [TBL] [Abstract][Full Text] [Related]
8. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis. Weng D; Yang L; Xie Y Protein Expr Purif; 2024 Sep; 221():106501. PubMed ID: 38782081 [TBL] [Abstract][Full Text] [Related]
9. Engineering versatile protein expression systems mediated by inteins in Escherichia coli. Kwong KW; Ng AK; Wong WK Appl Microbiol Biotechnol; 2016 Jan; 100(1):255-62. PubMed ID: 26381664 [TBL] [Abstract][Full Text] [Related]
10. Split intein mediated ultra-rapid purification of tagless protein (SIRP). Guan D; Ramirez M; Chen Z Biotechnol Bioeng; 2013 Sep; 110(9):2471-81. PubMed ID: 23568256 [TBL] [Abstract][Full Text] [Related]
11. Study of protein splicing and intein-mediated peptide bond cleavage under high-cell-density conditions. Sharma S; Zhang A; Wang H; Harcum SW; Chong S Biotechnol Prog; 2003; 19(3):1085-90. PubMed ID: 12790686 [TBL] [Abstract][Full Text] [Related]
12. Site-specific protein labeling by intein-mediated protein ligation. Ghosh I; Considine N; Maunus E; Sun L; Zhang A; Buswell J; Evans TC; Xu MQ Methods Mol Biol; 2011; 705():87-107. PubMed ID: 21125382 [TBL] [Abstract][Full Text] [Related]
13. [Intein-containing chimeric protein construction and evaluation of its cleavage conditions]. Starokadomskiĭ PL; Dubeĭ IIa; Okunev OV; Irodov DM Tsitol Genet; 2007; 41(2):3-11. PubMed ID: 17494337 [TBL] [Abstract][Full Text] [Related]
14. Intein-mediated protein purification of fusion proteins expressed under high-cell density conditions in E. coli. Sharma SS; Chong S; Harcum SW J Biotechnol; 2006 Aug; 125(1):48-56. PubMed ID: 16546284 [TBL] [Abstract][Full Text] [Related]
15. Production, purification, and characterization of the cecropin from Plutella xylostella, pxCECA1, using an intein-induced self-cleavable system in Escherichia coli. Wang H; Meng XL; Xu JP; Wang J; Wang H; Ma CW Appl Microbiol Biotechnol; 2012 May; 94(4):1031-9. PubMed ID: 22258643 [TBL] [Abstract][Full Text] [Related]
16. Simulation of large-scale production of a soluble recombinant protein expressed in Escherichia coli using an intein-mediated purification system. Sharma SS; Chong S; Harcum SW Appl Biochem Biotechnol; 2005 Aug; 126(2):93-118. PubMed ID: 16118465 [TBL] [Abstract][Full Text] [Related]
17. Protein Affinity Purification using Intein/Chitin Binding Protein Tags. Mitchell SF; Lorsch JR Methods Enzymol; 2015; 559():111-25. PubMed ID: 26096506 [TBL] [Abstract][Full Text] [Related]
18. Optimization of an anti-HER2 nanobody expression using the Taguchi method. Farasat A; Rahbarizadeh F; Ahmadvand D; Yazdian F Prep Biochem Biotechnol; 2017 Sep; 47(8):795-803. PubMed ID: 28636463 [TBL] [Abstract][Full Text] [Related]
19. Cytoplasmic Production of Nanobodies and Nanobody-Based Reagents by Co-Expression of Sulfhydryl Oxidase and DsbC Isomerase. de Marco A Methods Mol Biol; 2022; 2446():145-157. PubMed ID: 35157272 [TBL] [Abstract][Full Text] [Related]
20. Convenient method of producing cyclic single-chain Fv antibodies by split-intein-mediated protein ligation and chaperone co-expression. Liu C; Kobashigawa Y; Yamauchi S; Fukuda N; Sato T; Masuda T; Ohtsuki S; Morioka H J Biochem; 2020 Sep; 168(3):257-263. PubMed ID: 32275752 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]