These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 26244055)

  • 21. Ultrasound-ionic liquid enhanced enzymatic and acid hydrolysis of biomass cellulose.
    Yu X; Bao X; Zhou C; Zhang L; Yagoub AEA; Yang H; Ma H
    Ultrason Sonochem; 2018 Mar; 41():410-418. PubMed ID: 29137769
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Isolation and structural characterization of sugarcane bagasse lignin after dilute phosphoric acid plus steam explosion pretreatment and its effect on cellulose hydrolysis.
    Zeng J; Tong Z; Wang L; Zhu JY; Ingram L
    Bioresour Technol; 2014 Feb; 154():274-81. PubMed ID: 24412855
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison of various lignin-extraction methods to enhance the accessibility and ease of enzymatic hydrolysis of the cellulosic component of steam-pretreated poplar.
    Tian D; Chandra RP; Lee JS; Lu C; Saddler JN
    Biotechnol Biofuels; 2017; 10():157. PubMed ID: 28649276
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cellulose Isolation Methodology for NMR Analysis of Cellulose Ultrastructure.
    Foston MB; Hubbell CA; Ragauskas AJ
    Materials (Basel); 2011 Nov; 4(11):1985-2002. PubMed ID: 28824119
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flowthrough pretreatment with very dilute acid provides insights into high lignin contribution to biomass recalcitrance.
    Bhagia S; Li H; Gao X; Kumar R; Wyman CE
    Biotechnol Biofuels; 2016; 9():245. PubMed ID: 27833657
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Fractionating pretreatment of sugarcane bagasse for increasing the enzymatic digestibility of cellulose].
    Zhao X; Liu D
    Sheng Wu Gong Cheng Xue Bao; 2011 Mar; 27(3):384-92. PubMed ID: 21650018
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of sodium hydroxide and calcium hydroxide pretreatments on the enzymatic hydrolysis and lignin recovery of sugarcane bagasse.
    Chang M; Li D; Wang W; Chen D; Zhang Y; Hu H; Ye X
    Bioresour Technol; 2017 Nov; 244(Pt 1):1055-1058. PubMed ID: 28851160
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the composition and processing potential of novel sources of Brazilian biomass for sustainable biorenewables production.
    Lima MA; Gomez LD; Steele-King CG; Simister R; Bernardinelli OD; Carvalho MA; Rezende CA; Labate CA; Deazevedo ER; McQueen-Mason SJ; Polikarpov I
    Biotechnol Biofuels; 2014 Jan; 7(1):10. PubMed ID: 24438499
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Milling pretreatment of sugarcane bagasse and straw for enzymatic hydrolysis and ethanol fermentation.
    da Silva AS; Inoue H; Endo T; Yano S; Bon EP
    Bioresour Technol; 2010 Oct; 101(19):7402-9. PubMed ID: 20578287
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of pretreatment and enzymatic hydrolysis on the physical-chemical composition and morphologic structure of sugarcane bagasse and sugarcane straw.
    Moretti MMS; Perrone OM; Nunes CDCC; Taboga S; Boscolo M; da Silva R; Gomes E
    Bioresour Technol; 2016 Nov; 219():773-777. PubMed ID: 27578061
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced enzymatic cellulose hydrolysis by subcritical carbon dioxide pretreatment of sugarcane bagasse.
    Zhang H; Wu S
    Bioresour Technol; 2014 Apr; 158():161-5. PubMed ID: 24603488
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conversion of liquid hot water, acid and alkali pretreated industrial hemp biomasses to bioethanol.
    Zhao J; Xu Y; Wang W; Griffin J; Wang D
    Bioresour Technol; 2020 Aug; 309():123383. PubMed ID: 32330804
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Recent advances on ammonia-based pretreatments of lignocellulosic biomass.
    Zhao C; Shao Q; Chundawat SPS
    Bioresour Technol; 2020 Feb; 298():122446. PubMed ID: 31791921
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estimation of cellulose crystallinity of sugarcane biomass using near infrared spectroscopy and multivariate analysis methods.
    Caliari ÍP; Barbosa MH; Ferreira SO; Teófilo RF
    Carbohydr Polym; 2017 Feb; 158():20-28. PubMed ID: 28024538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An evaluation of dilute acid and ammonia fiber explosion pretreatment for cellulosic ethanol production.
    Mathew AK; Parameshwaran B; Sukumaran RK; Pandey A
    Bioresour Technol; 2016 Jan; 199():13-20. PubMed ID: 26358144
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An effective chemical pretreatment method for lignocellulosic biomass with substituted imidazoles.
    Kang Y; Realff MJ; Sohn M; Lee JH; Bommarius AS
    Biotechnol Prog; 2015; 31(1):25-34. PubMed ID: 25311613
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Supercritical CO2 and ionic liquids for the pretreatment of lignocellulosic biomass in bioethanol production.
    Gu T; Held MA; Faik A
    Environ Technol; 2013; 34(13-16):1735-49. PubMed ID: 24350431
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of different pretreatment methods on chemical composition of sugarcane bagasse and enzymatic hydrolysis.
    Gao Y; Xu J; Zhang Y; Yu Q; Yuan Z; Liu Y
    Bioresour Technol; 2013 Sep; 144():396-400. PubMed ID: 23891836
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Comparing impacts of physicochemical properties and hydrolytic inhibitors on enzymatic hydrolysis of sugarcane bagasse.
    Li M; Guo C; Luo B; Chen C; Wang S; Min D
    Bioprocess Biosyst Eng; 2020 Jan; 43(1):111-122. PubMed ID: 31538235
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Analysis of the conversion of cellulose present in lignocellulosic biomass for biofuel production.
    Roberto JA; Costa Júnior EFD; Costa AOSD
    An Acad Bras Cienc; 2023; 95(3):e20220635. PubMed ID: 37909561
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.