BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26244117)

  • 1. Motor neurons in the escape response circuit of white shrimp (Litopenaeus setiferus).
    Faulkes Z
    PeerJ; 2015; 3():e1112. PubMed ID: 26244117
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of escape responses and giant neurons in the tailflipping circuits of slipper lobsters, Ibacus spp. (Decapoda, Palinura, Scyllaridae).
    Faulkes Z
    Arthropod Struct Dev; 2004 Apr; 33(2):113-23. PubMed ID: 18089027
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loss of escape-related giant neurons in a spiny lobster, Panulirus argus.
    Espinoza SY; Breen L; Varghese N; Faulkes Z
    Biol Bull; 2006 Dec; 211(3):223-31. PubMed ID: 17179382
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Turning loss into opportunity: the key deletion of an escape circuit in decapod crustaceans.
    Faulkes Z
    Brain Behav Evol; 2008; 72(4):251-61. PubMed ID: 19001807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interneurons between giant axons and motoneurons in crayfish escape circuitry.
    Kramer AP; Krasne FB; Wine JJ
    J Neurophysiol; 1981 Mar; 45(3):550-73. PubMed ID: 7218014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel neurobiological properties of elements in the escape circuitry of the shrimp.
    Mellon F
    J Exp Biol; 2017 Oct; 220(Pt 20):3771-3781. PubMed ID: 28819053
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Plasticity of non-giant flexion circuitry in chronically cut abdominal nerve cords of the crayfish, Procambarus clarkii.
    Lee MT; Wine JJ
    J Physiol; 1984 Oct; 355():661-75. PubMed ID: 6238160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoinactivation of the crayfish segmental giant neuron reveals a direct giant-fiber to fast-flexor connection with a chemical component.
    Fraser K; Heitler WJ
    J Neurosci; 1991 Jan; 11(1):59-71. PubMed ID: 1986069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crayfish escape behavior: production of tailflips without giant fiber activity.
    Kramer AP; Krasne FB
    J Neurophysiol; 1984 Aug; 52(2):189-211. PubMed ID: 6090603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural basis of a simple behavior: abdominal positioning in crayfish.
    Larimer JL; Moore D
    Microsc Res Tech; 2003 Feb; 60(3):346-59. PubMed ID: 12539164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local inhibitor of the crayfish telson-flexor motor giant neurons: morphology and physiology.
    Kirk MD; Dumont JP; Wine JJ
    J Comp Physiol A; 1986 Jan; 158(1):69-79. PubMed ID: 3723430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Segmental differences in pathways between crayfish giant axons and fast flexor motoneurons.
    Miller LA; Hagiwara G; Wine JJ
    J Neurophysiol; 1985 Jan; 53(1):252-65. PubMed ID: 3973660
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional organization of crayfish abdominal ganglia: I. The flexor systems.
    Leise EM; Hall WM; Mulloney B
    J Comp Neurol; 1986 Nov; 253(1):25-45. PubMed ID: 2432099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neuronal organization of crayfish escape behavior: inhibition of giant motoneuron via a disynaptic pathway from other motoneurons.
    Wine JJ
    J Neurophysiol; 1977 Sep; 40(5):1078-97. PubMed ID: 903798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polypocephalus sp. infects the nervous system and increases activity of commercially harvested white shrimp (Litopenaeus setiferus).
    Carreon N; Faulkes Z; Fredensborg BL
    J Parasitol; 2011 Oct; 97(5):755-9. PubMed ID: 21506800
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A map of distal leg motor neurons in the thoracic ganglia of four decapod crustacean species.
    Faulkes Z; Paul DH
    Brain Behav Evol; 1997; 49(3):162-78. PubMed ID: 9063594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Segmental giant: evidence for a driver neuron interposed between command and motor neurons in the crayfish escape system.
    Roberts A; Krasne FB; Hagiwara G; Wine JJ; Kramer AP
    J Neurophysiol; 1982 May; 47(5):761-81. PubMed ID: 7086468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction and synchronization between two abdominal motor systems in crayfish.
    Chrachri A; Neil DM
    J Neurophysiol; 1993 May; 69(5):1373-83. PubMed ID: 8389820
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interneurons of the abdominal positioning system of the crayfish. How these neurons were established and their use as identified cells and command elements.
    Larimer JL
    Brain Behav Evol; 2000 May; 55(5):241-7. PubMed ID: 10971010
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathways mediating abdominal phasic flexor muscle activity in crayfish with chronically cut nerve cords.
    Lee MT; Glidden R; Young SM; Jackson DA; Kirk MD
    J Comp Physiol A; 1995 Jan; 176(1):91-102. PubMed ID: 7823311
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.