These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 26244519)
1. Involvement of AMPK in regulating slow-twitch muscle atrophy during hindlimb unloading in mice. Egawa T; Goto A; Ohno Y; Yokoyama S; Ikuta A; Suzuki M; Sugiura T; Ohira Y; Yoshioka T; Hayashi T; Goto K Am J Physiol Endocrinol Metab; 2015 Oct; 309(7):E651-62. PubMed ID: 26244519 [TBL] [Abstract][Full Text] [Related]
2. Dystrophin involved in the susceptibility of slow muscles to hindlimb unloading via concomitant activation of TGF-β1/Smad3 signaling and ubiquitin-proteasome degradation in mice. Zhang P; Li W; Liu H; Li J; Wang J; Li Y; Chen X; Yang Z; Fan M Cell Biochem Biophys; 2014 Nov; 70(2):1057-67. PubMed ID: 24839113 [TBL] [Abstract][Full Text] [Related]
3. AMPK Mediates Muscle Mass Change But Not the Transition of Myosin Heavy Chain Isoforms during Unloading and Reloading of Skeletal Muscles in Mice. Egawa T; Ohno Y; Goto A; Yokoyama S; Hayashi T; Goto K Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30262782 [TBL] [Abstract][Full Text] [Related]
4. Ubiquitin targeting of rat muscle proteins during short periods of unloading. Vermaelen M; Marini JF; Chopard A; Benyamin Y; Mercier J; Astier C Acta Physiol Scand; 2005 Sep; 185(1):33-40. PubMed ID: 16128695 [TBL] [Abstract][Full Text] [Related]
8. Muscle-specific and age-related changes in protein synthesis and protein degradation in response to hindlimb unloading in rats. Baehr LM; West DWD; Marshall AG; Marcotte GR; Baar K; Bodine SC J Appl Physiol (1985); 2017 May; 122(5):1336-1350. PubMed ID: 28336537 [TBL] [Abstract][Full Text] [Related]
9. Metformin Attenuates Slow-to-Fast Fiber Shift and Proteolysis Markers Increase in Rat Soleus after 7 Days of Rat Hindlimb Unloading. Sharlo KA; Lvova ID; Belova SP; Zaripova KA; Shenkman BS; Nemirovskaya TL Int J Mol Sci; 2022 Dec; 24(1):. PubMed ID: 36613942 [TBL] [Abstract][Full Text] [Related]
10. Rat hindlimb unloading down-regulates insulin like growth factor-1 signaling and AMP-activated protein kinase, and leads to severe atrophy of the soleus muscle. Han B; Zhu MJ; Ma C; Du M Appl Physiol Nutr Metab; 2007 Dec; 32(6):1115-23. PubMed ID: 18059585 [TBL] [Abstract][Full Text] [Related]
11. PGC-1α and FOXO1 mRNA levels and fiber characteristics of the soleus and plantaris muscles in rats after hindlimb unloading. Nagatomo F; Fujino H; Kondo H; Suzuki H; Kouzaki M; Takeda I; Ishihara A Histol Histopathol; 2011 Dec; 26(12):1545-53. PubMed ID: 21972093 [TBL] [Abstract][Full Text] [Related]
12. Proteomic analysis of mouse soleus muscles affected by hindlimb unloading and reloading. Wang F; Zhang P; Liu H; Fan M; Chen X Muscle Nerve; 2015 Nov; 52(5):803-11. PubMed ID: 25656502 [TBL] [Abstract][Full Text] [Related]
13. Metformin attenuates an increase of calcium-dependent and ubiquitin-proteasome markers in unloaded muscle. Belova SP; Zaripova K; Sharlo K; Kostrominova TY; Shenkman BS; Nemirovskaya TL J Appl Physiol (1985); 2022 Nov; 133(5):1149-1163. PubMed ID: 36227165 [TBL] [Abstract][Full Text] [Related]
14. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading. Cannavino J; Brocca L; Sandri M; Grassi B; Bottinelli R; Pellegrino MA J Physiol; 2015 Apr; 593(8):1981-95. PubMed ID: 25565653 [TBL] [Abstract][Full Text] [Related]
15. Alpha2-AMPK activity is not essential for an increase in fatty acid oxidation during low-intensity exercise. Miura S; Kai Y; Kamei Y; Bruce CR; Kubota N; Febbraio MA; Kadowaki T; Ezaki O Am J Physiol Endocrinol Metab; 2009 Jan; 296(1):E47-55. PubMed ID: 18940938 [TBL] [Abstract][Full Text] [Related]
16. Effect of Eukarion-134 on Akt-mTOR signalling in the rat soleus during 7 days of mechanical unloading. Kuczmarski JM; Hord JM; Lee Y; Guzzoni V; Rodriguez D; Lawler MS; Garcia-Villatoro EL; Holly D; Ryan P; Falcon K; Garcia M; Janini Gomes M; Fluckey JD; Lawler JM Exp Physiol; 2018 Apr; 103(4):545-558. PubMed ID: 29315934 [TBL] [Abstract][Full Text] [Related]
17. Slow recovery of the impaired fatigue resistance in postunloading mouse soleus muscle corresponding to decreased mitochondrial function and a compensatory increase in type I slow fibers. Feng HZ; Chen X; Malek MH; Jin JP Am J Physiol Cell Physiol; 2016 Jan; 310(1):C27-40. PubMed ID: 26447205 [TBL] [Abstract][Full Text] [Related]
18. High-Molecular-Weight Polyphenol-Rich Fraction of Black Tea Does Not Prevent Atrophy by Unloading, But Promotes Soleus Muscle Mass Recovery from Atrophy in Mice. Aoki Y; Ozawa T; Numata O; Takemasa T Nutrients; 2019 Sep; 11(9):. PubMed ID: 31500089 [TBL] [Abstract][Full Text] [Related]
19. Effect of combined fish oil & Curcumin on murine skeletal muscle morphology and stress response proteins during mechanical unloading. Lawler JM; Garcia-Villatoro EL; Guzzoni V; Hord JM; Botchlett R; Holly D; Lawler MS; Janini Gomes M; Ryan P; Rodriguez D; Kuczmarski JM; Fluckey JD; Talcott S Nutr Res; 2019 May; 65():17-28. PubMed ID: 30954343 [TBL] [Abstract][Full Text] [Related]
20. The impact of muscle disuse on muscle atrophy in severely burned rats. Wu X; Baer LA; Wolf SE; Wade CE; Walters TJ J Surg Res; 2010 Dec; 164(2):e243-51. PubMed ID: 20888588 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]