BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 26244771)

  • 1. Role of GxxxG Motifs in Transmembrane Domain Interactions.
    Teese MG; Langosch D
    Biochemistry; 2015 Aug; 54(33):5125-35. PubMed ID: 26244771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical analysis of amino acid patterns in transmembrane helices: the GxxxG motif occurs frequently and in association with beta-branched residues at neighboring positions.
    Senes A; Gerstein M; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):921-36. PubMed ID: 10677292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The composition rather than position of polar residues (QxxS) drives aspartate receptor transmembrane domain dimerization in vivo.
    Sal-Man N; Gerber D; Shai Y
    Biochemistry; 2004 Mar; 43(8):2309-13. PubMed ID: 14979727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence dependence of BNIP3 transmembrane domain dimerization implicates side-chain hydrogen bonding and a tandem GxxxG motif in specific helix-helix interactions.
    Sulistijo ES; MacKenzie KR
    J Mol Biol; 2006 Dec; 364(5):974-90. PubMed ID: 17049556
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motifs of two small residues can assist but are not sufficient to mediate transmembrane helix interactions.
    Schneider D; Engelman DM
    J Mol Biol; 2004 Oct; 343(4):799-804. PubMed ID: 15476801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phenylalanine promotes interaction of transmembrane domains via GxxxG motifs.
    Unterreitmeier S; Fuchs A; Schäffler T; Heym RG; Frishman D; Langosch D
    J Mol Biol; 2007 Nov; 374(3):705-18. PubMed ID: 17949750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ionic interactions promote transmembrane helix-helix association depending on sequence context.
    Herrmann JR; Fuchs A; Panitz JC; Eckert T; Unterreitmeier S; Frishman D; Langosch D
    J Mol Biol; 2010 Feb; 396(2):452-61. PubMed ID: 19961858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane helix dimerization: beyond the search for sequence motifs.
    Li E; Wimley WC; Hristova K
    Biochim Biophys Acta; 2012 Feb; 1818(2):183-93. PubMed ID: 21910966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complex patterns of histidine, hydroxylated amino acids and the GxxxG motif mediate high-affinity transmembrane domain interactions.
    Herrmann JR; Panitz JC; Unterreitmeier S; Fuchs A; Frishman D; Langosch D
    J Mol Biol; 2009 Jan; 385(3):912-23. PubMed ID: 19007788
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The position of the Gly-xxx-Gly motif in transmembrane segments modulates dimer affinity.
    Johnson RM; Rath A; Deber CM
    Biochem Cell Biol; 2006 Dec; 84(6):1006-12. PubMed ID: 17215886
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular dynamics simulations of the dimerization of transmembrane alpha-helices.
    Psachoulia E; Marshall DP; Sansom MS
    Acc Chem Res; 2010 Mar; 43(3):388-96. PubMed ID: 20017540
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Folding of helical membrane proteins: the role of polar, GxxxG-like and proline motifs.
    Senes A; Engel DE; DeGrado WF
    Curr Opin Struct Biol; 2004 Aug; 14(4):465-79. PubMed ID: 15313242
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmembrane helix-helix interactions are modulated by the sequence context and by lipid bilayer properties.
    Cymer F; Veerappan A; Schneider D
    Biochim Biophys Acta; 2012 Apr; 1818(4):963-73. PubMed ID: 21827736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of a membrane protein folding motif, the Ser zipper, using designed peptides.
    North B; Cristian L; Fu Stowell X; Lear JD; Saven JG; Degrado WF
    J Mol Biol; 2006 Jun; 359(4):930-9. PubMed ID: 16697010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimerization of the transmembrane domain of Integrin alphaIIb subunit in cell membranes.
    Li R; Gorelik R; Nanda V; Law PB; Lear JD; DeGrado WF; Bennett JS
    J Biol Chem; 2004 Jun; 279(25):26666-73. PubMed ID: 15067009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The GxxxG motif: a framework for transmembrane helix-helix association.
    Russ WP; Engelman DM
    J Mol Biol; 2000 Feb; 296(3):911-9. PubMed ID: 10677291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Caveolin-Na/K-ATPase interactions: role of transmembrane topology in non-genomic steroid signal transduction.
    Morrill GA; Kostellow AB; Askari A
    Steroids; 2012 Sep; 77(11):1160-8. PubMed ID: 22579740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence and conformational preferences at termini of α-helices in membrane proteins: role of the helix environment.
    Shelar A; Bansal M
    Proteins; 2014 Dec; 82(12):3420-36. PubMed ID: 25257385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo selection of heterotypically interacting transmembrane helices: Complementary helix surfaces, rather than conserved interaction motifs, drive formation of transmembrane hetero-dimers.
    Steindorf D; Schneider D
    Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):245-256. PubMed ID: 27915045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identification of a minimal dimerization motif QXXS that enables homo- and hetero-association of transmembrane helices in vivo.
    Sal-Man N; Gerber D; Shai Y
    J Biol Chem; 2005 Jul; 280(29):27449-57. PubMed ID: 15911619
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.