These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 26244771)
21. A transmembrane domain and GxxxG motifs within L2 are essential for papillomavirus infection. Bronnimann MP; Chapman JA; Park CK; Campos SK J Virol; 2013 Jan; 87(1):464-73. PubMed ID: 23097431 [TBL] [Abstract][Full Text] [Related]
22. Transmembrane domains interactions within the membrane milieu: principles, advances and challenges. Fink A; Sal-Man N; Gerber D; Shai Y Biochim Biophys Acta; 2012 Apr; 1818(4):974-83. PubMed ID: 22155642 [TBL] [Abstract][Full Text] [Related]
23. The affinity of GXXXG motifs in transmembrane helix-helix interactions is modulated by long-range communication. Melnyk RA; Kim S; Curran AR; Engelman DM; Bowie JU; Deber CM J Biol Chem; 2004 Apr; 279(16):16591-7. PubMed ID: 14766751 [TBL] [Abstract][Full Text] [Related]
24. Motifs of serine and threonine can drive association of transmembrane helices. Dawson JP; Weinger JS; Engelman DM J Mol Biol; 2002 Feb; 316(3):799-805. PubMed ID: 11866532 [TBL] [Abstract][Full Text] [Related]
25. Arginine mutations within a transmembrane domain of Tar, an Escherichia coli aspartate receptor, can drive homodimer dissociation and heterodimer association in vivo. Sal-Man N; Shai Y Biochem J; 2005 Jan; 385(Pt 1):29-36. PubMed ID: 15330757 [TBL] [Abstract][Full Text] [Related]
26. A systematic search method for the identification of tightly packed transmembrane parallel alpha-helices. Akula N; Pattabiraman N J Biomol Struct Dyn; 2005 Jun; 22(6):625-34. PubMed ID: 15842168 [TBL] [Abstract][Full Text] [Related]
27. Sequence-specific dimerization of the transmembrane domain of the "BH3-only" protein BNIP3 in membranes and detergent. Sulistijo ES; Jaszewski TM; MacKenzie KR J Biol Chem; 2003 Dec; 278(51):51950-6. PubMed ID: 14532263 [TBL] [Abstract][Full Text] [Related]
28. Hydrophobic helical hairpins: design and packing interactions in membrane environments. Johnson RM; Heslop CL; Deber CM Biochemistry; 2004 Nov; 43(45):14361-9. PubMed ID: 15533040 [TBL] [Abstract][Full Text] [Related]
29. GXXXG and AXXXA: common alpha-helical interaction motifs in proteins, particularly in extremophiles. Kleiger G; Grothe R; Mallick P; Eisenberg D Biochemistry; 2002 May; 41(19):5990-7. PubMed ID: 11993993 [TBL] [Abstract][Full Text] [Related]
30. Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. Gerber D; Sal-Man N; Shai Y J Biol Chem; 2004 May; 279(20):21177-82. PubMed ID: 14985340 [TBL] [Abstract][Full Text] [Related]
31. Charge pair interactions in transmembrane helices and turn propensity of the connecting sequence promote helical hairpin insertion. Bañó-Polo M; Martínez-Gil L; Wallner B; Nieva JL; Elofsson A; Mingarro I J Mol Biol; 2013 Feb; 425(4):830-40. PubMed ID: 23228331 [TBL] [Abstract][Full Text] [Related]
32. A trimerizing GxxxG motif is uniquely inserted in the severe acute respiratory syndrome (SARS) coronavirus spike protein transmembrane domain. Arbely E; Granot Z; Kass I; Orly J; Arkin IT Biochemistry; 2006 Sep; 45(38):11349-56. PubMed ID: 16981695 [TBL] [Abstract][Full Text] [Related]
33. De novo design of transmembrane helix-helix interactions and measurement of stability in a biological membrane. Nash A; Notman R; Dixon AM Biochim Biophys Acta; 2015 May; 1848(5):1248-57. PubMed ID: 25732028 [TBL] [Abstract][Full Text] [Related]
34. Complex interactions at the helix-helix interface stabilize the glycophorin A transmembrane dimer. Doura AK; Fleming KG J Mol Biol; 2004 Nov; 343(5):1487-97. PubMed ID: 15491626 [TBL] [Abstract][Full Text] [Related]
35. Two GxxxG-like motifs facilitate promiscuous interactions of the human ErbB transmembrane domains. Escher C; Cymer F; Schneider D J Mol Biol; 2009 May; 389(1):10-6. PubMed ID: 19361517 [TBL] [Abstract][Full Text] [Related]
36. Intermonomer hydrogen bonds enhance GxxxG-driven dimerization of the BNIP3 transmembrane domain: roles for sequence context in helix-helix association in membranes. Lawrie CM; Sulistijo ES; MacKenzie KR J Mol Biol; 2010 Mar; 396(4):924-36. PubMed ID: 20026130 [TBL] [Abstract][Full Text] [Related]
37. Genetic selection for and molecular dynamic modeling of a protein transmembrane domain multimerization motif from a random Escherichia coli genomic library. Leeds JA; Boyd D; Huber DR; Sonoda GK; Luu HT; Engelman DM; Beckwith J J Mol Biol; 2001 Oct; 313(1):181-95. PubMed ID: 11601855 [TBL] [Abstract][Full Text] [Related]
38. The single transmembrane domains of ErbB receptors self-associate in cell membranes. Mendrola JM; Berger MB; King MC; Lemmon MA J Biol Chem; 2002 Feb; 277(7):4704-12. PubMed ID: 11741943 [TBL] [Abstract][Full Text] [Related]
39. The role of individual amino acids in the dimerization of CR4 and ACR4 transmembrane domains. Stokes KD; Rao AG Arch Biochem Biophys; 2010 Oct; 502(2):104-11. PubMed ID: 20655866 [TBL] [Abstract][Full Text] [Related]
40. Aromatic and cation-pi interactions enhance helix-helix association in a membrane environment. Johnson RM; Hecht K; Deber CM Biochemistry; 2007 Aug; 46(32):9208-14. PubMed ID: 17658897 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]