These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 26244771)

  • 41. A mutational study of transmembrane helix-helix interactions.
    Prodöhl A; Weber M; Dreher C; Schneider D
    Biochimie; 2007 Nov; 89(11):1433-7. PubMed ID: 17688996
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Gas-phase behavior of noncovalent transmembrane segment complexes.
    Weigang LM; Langosch D; Letzel T
    Rapid Commun Mass Spectrom; 2008 Dec; 22(24):4089-97. PubMed ID: 19025888
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A GxxxG-like motif within HIV-1 fusion peptide is critical to its immunosuppressant activity, structure, and interaction with the transmembrane domain of the T-cell receptor.
    Faingold O; Cohen T; Shai Y
    J Biol Chem; 2012 Sep; 287(40):33503-11. PubMed ID: 22872636
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Helix-helix packing and interfacial pairwise interactions of residues in membrane proteins.
    Adamian L; Liang J
    J Mol Biol; 2001 Aug; 311(4):891-907. PubMed ID: 11518538
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Influence of hydrophobic matching on association of model transmembrane fragments containing a minimised glycophorin A dimerisation motif.
    Orzáez M; Lukovic D; Abad C; Pérez-Payá E; Mingarro I
    FEBS Lett; 2005 Mar; 579(7):1633-8. PubMed ID: 15757653
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Interhelical hydrogen bonding drives strong interactions in membrane proteins.
    Zhou FX; Cocco MJ; Russ WP; Brunger AT; Engelman DM
    Nat Struct Biol; 2000 Feb; 7(2):154-60. PubMed ID: 10655619
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Packing contacts can mediate highly specific interactions between artificial transmembrane proteins and the PDGFbeta receptor.
    Ptacek JB; Edwards AP; Freeman-Cook LL; DiMaio D
    Proc Natl Acad Sci U S A; 2007 Jul; 104(29):11945-50. PubMed ID: 17609376
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evidence for role of transmembrane helix-helix interactions in the assembly of the Class II major histocompatibility complex.
    King G; Dixon AM
    Mol Biosyst; 2010 Sep; 6(9):1650-61. PubMed ID: 20379596
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Six amino acids define a minimal dimerization sequence and stabilize a transmembrane helix dimer by close packing and hydrogen bonding.
    Weber M; Schneider D
    FEBS Lett; 2013 Jun; 587(11):1592-6. PubMed ID: 23583446
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutational analysis of putative helix-helix interacting GxxxG-motifs and tryptophan residues in the two-peptide bacteriocin lactococcin G.
    Oppegård C; Schmidt J; Kristiansen PE; Nissen-Meyer J
    Biochemistry; 2008 May; 47(18):5242-9. PubMed ID: 18407666
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The association of polar residues in the DAP12 homodimer: TOXCAT and molecular dynamics simulation studies.
    Wei P; Zheng BK; Guo PR; Kawakami T; Luo SZ
    Biophys J; 2013 Apr; 104(7):1435-44. PubMed ID: 23561520
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Terminal residue hydrophobicity modulates transmembrane helix-helix interactions.
    Ng DP; Deber CM
    Biochemistry; 2014 Jun; 53(23):3747-57. PubMed ID: 24857611
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A dimerization motif for transmembrane alpha-helices.
    Lemmon MA; Treutlein HR; Adams PD; Brünger AT; Engelman DM
    Nat Struct Biol; 1994 Mar; 1(3):157-63. PubMed ID: 7656033
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The GxxxG-containing transmembrane domain of the CCK4 oncogene does not encode preferential self-interactions.
    Kobus FJ; Fleming KG
    Biochemistry; 2005 Feb; 44(5):1464-70. PubMed ID: 15683231
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The yeast F(1)F(0)-ATP synthase: analysis of the molecular organization of subunit g and the importance of a conserved GXXXG motif.
    Saddar S; Stuart RA
    J Biol Chem; 2005 Jul; 280(26):24435-42. PubMed ID: 15886192
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Beta-branched residues adjacent to GG4 motifs promote the efficient association of glycophorin A transmembrane helices.
    Cunningham F; Poulsen BE; Ip W; Deber CM
    Biopolymers; 2011; 96(3):340-7. PubMed ID: 21072853
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complete predicted three-dimensional structure of the facilitator transmembrane protein and hepatitis C virus receptor CD81: conserved and variable structural domains in the tetraspanin superfamily.
    Seigneuret M
    Biophys J; 2006 Jan; 90(1):212-27. PubMed ID: 16352525
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Proline localized to the interaction interface can mediate self-association of transmembrane domains.
    Sal-Man N; Gerber D; Shai Y
    Biochim Biophys Acta; 2014 Sep; 1838(9):2313-8. PubMed ID: 24841754
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tryptophan supports interaction of transmembrane helices.
    Ridder A; Skupjen P; Unterreitmeier S; Langosch D
    J Mol Biol; 2005 Dec; 354(4):894-902. PubMed ID: 16280130
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Peptide mimics of the M13 coat protein transmembrane segment. Retention of helix-helix interaction motifs.
    Wang C; Deber CM
    J Biol Chem; 2000 May; 275(21):16155-9. PubMed ID: 10747951
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.