These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 26244821)

  • 1. Tunneling Nanoelectromechanical Switches Based on Compressible Molecular Thin Films.
    Niroui F; Wang AI; Sletten EM; Song Y; Kong J; Yablonovitch E; Swager TM; Lang JH; Bulović V
    ACS Nano; 2015 Aug; 9(8):7886-94. PubMed ID: 26244821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Platform for Fast Low-Voltage Nanoelectromechanical Switching.
    Han J; Nelson Z; Chua MR; Swager TM; Niroui F; Lang JH; Bulović V
    Nano Lett; 2021 Dec; 21(24):10244-10251. PubMed ID: 34874728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrodynamic Force, Casimir Effect, and Stiction Mitigation in Silicon Carbide Nanoelectromechanical Switches.
    Yang R; Qian J; Feng PX
    Small; 2020 Dec; 16(51):e2005594. PubMed ID: 33236527
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A sub-1-volt nanoelectromechanical switching device.
    Lee JO; Song YH; Kim MW; Kang MH; Oh JS; Yang HH; Yoon JB
    Nat Nanotechnol; 2013 Jan; 8(1):36-40. PubMed ID: 23178336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-terminal nanoelectromechanical switch based on tungsten nitride--an amorphous metallic material.
    Mayet AM; Hussain AM; Hussain MM
    Nanotechnology; 2016 Jan; 27(3):035202. PubMed ID: 26636189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fabrication and Characterization of Double- and Single-Clamped CuO Nanowire Based Nanoelectromechanical Switches.
    Jasulaneca L; Livshits AI; Meija R; Kosmaca J; Sondors R; Ramma MM; Jevdokimovs D; Prikulis J; Erts D
    Nanomaterials (Basel); 2021 Jan; 11(1):. PubMed ID: 33419203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-terminal nanoelectromechanical bistable switches based on molybdenum-sulfur-iodine molecular wire bundles.
    Andzane J; Prikulis J; Dvorsek D; Mihailovic D; Erts D
    Nanotechnology; 2010 Mar; 21(12):125706. PubMed ID: 20203354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Large-scale nanoelectromechanical switches based on directly deposited nanocrystalline graphene on insulating substrates.
    Sun J; Schmidt ME; Muruganathan M; Chong HM; Mizuta H
    Nanoscale; 2016 Mar; 8(12):6659-65. PubMed ID: 26948477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. >1000-Fold Lifetime Extension of a Nickel Electromechanical Contact Device via Graphene.
    Seo MH; Ko JH; Lee JO; Ko SD; Mun JH; Cho BJ; Kim YH; Yoon JB
    ACS Appl Mater Interfaces; 2018 Mar; 10(10):9085-9093. PubMed ID: 29461033
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large arrays and properties of 3-terminal graphene nanoelectromechanical switches.
    Liu X; Suk JW; Boddeti NG; Cantley L; Wang L; Gray JM; Hall HJ; Bright VM; Rogers CT; Dunn ML; Ruoff RS; Bunch JS
    Adv Mater; 2014 Mar; 26(10):1571-6. PubMed ID: 24339026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of nanomaterials in two-terminal resistive-switching memory devices.
    Ouyang J
    Nano Rev; 2010; 1():. PubMed ID: 22110862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable chemical vapor deposition growth of few layer graphene for electronic devices.
    Wei D; Wu B; Guo Y; Yu G; Liu Y
    Acc Chem Res; 2013 Jan; 46(1):106-15. PubMed ID: 22809220
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoelectromechanical contact switches.
    Loh OY; Espinosa HD
    Nat Nanotechnol; 2012 Apr; 7(5):283-95. PubMed ID: 22543427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation Techniques for Nanoelectromechanical (NEM) Relay.
    Cho K; Shin C
    J Nanosci Nanotechnol; 2018 Sep; 18(9):6615-6618. PubMed ID: 29677845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition from direct to Fowler-Nordheim tunneling in chemically reduced graphene oxide film.
    Pandey S; Biswas C; Ghosh T; Bae JJ; Rai P; Kim GH; Thomas KJ; Lee YH; Nikolaev P; Arepalli S
    Nanoscale; 2014 Mar; 6(6):3410-7. PubMed ID: 24531922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of surface effects on the pull-in instability of NEMS electrostatic switches.
    Ma JB; Jiang L; Asokanthan SF
    Nanotechnology; 2010 Dec; 21(50):505708. PubMed ID: 21098949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication and electrical characterization of graphene formed chemically on nickel nano electro mechanical system (NEMS) switch.
    Choe BI; Lee JK; Lee B; Kim K; Choi WY; Hong BH; Lee JH
    J Nanosci Nanotechnol; 2014 Dec; 14(12):9418-24. PubMed ID: 25971076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge transport in nanoscale junctions.
    Albrecht T; Kornyshev A; Bjørnholm T
    J Phys Condens Matter; 2008 Sep; 20(37):370301. PubMed ID: 21694407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Charge conduction and breakdown mechanisms in self-assembled nanodielectrics.
    DiBenedetto SA; Facchetti A; Ratner MA; Marks TJ
    J Am Chem Soc; 2009 May; 131(20):7158-68. PubMed ID: 19408943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale characterization of different stiction mechanisms in electrostatically driven MEMS devices based on adhesion and friction measurements.
    Zaghloul U; Bhushan B; Pons P; Papaioannou GJ; Coccetti F; Plana R
    J Colloid Interface Sci; 2011 Jun; 358(1):1-13. PubMed ID: 21444091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.