These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 26244907)

  • 1. Differences in properties and proteomes of the midribs contribute to the size of the leaf angle in two near-isogenic maize lines.
    Wang N; Cao D; Gong F; Ku L; Chen Y; Wang W
    J Proteomics; 2015 Oct; 128():113-22. PubMed ID: 26244907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological and proteome studies of maize (Zea mays L.) in response to leaf removal under high plant density.
    Wei S; Wang X; Jiang D; Dong S
    BMC Plant Biol; 2018 Dec; 18(1):378. PubMed ID: 30594144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ZmCLA4 gene in the qLA4-1 QTL controls leaf angle in maize (Zea mays L.).
    Zhang J; Ku LX; Han ZP; Guo SL; Liu HJ; Zhang ZZ; Cao LR; Cui XJ; Chen YH
    J Exp Bot; 2014 Sep; 65(17):5063-76. PubMed ID: 24987012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cloning and characterization of a putative TAC1 ortholog associated with leaf angle in maize (Zea mays L.).
    Ku L; Wei X; Zhang S; Zhang J; Guo S; Chen Y
    PLoS One; 2011; 6(6):e20621. PubMed ID: 21687735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maize (Zea mays L.) seedling leaf nuclear proteome and differentially expressed proteins between a hybrid and its parental lines.
    Guo B; Chen Y; Li C; Wang T; Wang R; Wang B; Hu S; Du X; Xing H; Song X; Yao Y; Sun Q; Ni Z
    Proteomics; 2014 May; 14(9):1071-87. PubMed ID: 24677780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Maize proteomic responses to separate or overlapping soil drought and two-spotted spider mite stresses.
    Dworak A; Nykiel M; Walczak B; Miazek A; Szworst-Łupina D; Zagdańska B; Kiełkiewicz M
    Planta; 2016 Oct; 244(4):939-60. PubMed ID: 27334025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of Three Protein-Extraction Methods for Proteome Analysis of Maize Leaf Midrib, a Compound Tissue Rich in Sclerenchyma Cells.
    Wang N; Wu X; Ku L; Chen Y; Wang W
    Front Plant Sci; 2016; 7():856. PubMed ID: 27379139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative proteomic analysis of the maize responses to early leaf senescence induced by preventing pollination.
    Wu L; Wang S; Tian L; Wu L; Li M; Zhang J; Li P; Zhang W; Chen Y
    J Proteomics; 2018 Apr; 177():75-87. PubMed ID: 29454112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correlation of mRNA and protein abundance in the developing maize leaf.
    Ponnala L; Wang Y; Sun Q; van Wijk KJ
    Plant J; 2014 May; 78(3):424-40. PubMed ID: 24547885
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A potential candidate gene associated with the angles of the ear leaf and the second leaf above the ear leaf in maize.
    Kuang T; Hu C; Shaw RK; Zhang Y; Fan J; Bi Y; Jiang F; Guo R; Fan X
    BMC Plant Biol; 2023 Nov; 23(1):540. PubMed ID: 37924003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Parallel proteomic and phosphoproteomic analyses of successive stages of maize leaf development.
    Facette MR; Shen Z; Björnsdóttir FR; Briggs SP; Smith LG
    Plant Cell; 2013 Aug; 25(8):2798-812. PubMed ID: 23933881
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long photoperiod affects the maize transition from vegetative to reproductive stages: a proteomic comparison between photoperiod-sensitive inbred line and its recurrent parent.
    Tian L; Wang S; Song X; Zhang J; Liu P; Chen Z; Chen Y; Wu L
    Amino Acids; 2018 Jan; 50(1):149-161. PubMed ID: 29030729
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The maize milkweed pod1 mutant reveals a mechanism to modify organ morphology.
    Johnston R; Candela H; Hake S; Foster T
    Genesis; 2010 Jul; 48(7):416-23. PubMed ID: 20213690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proteome profile of maize (Zea Mays L.) leaf tissue at the flowering stage after long-term adjustment to rice black-streaked dwarf virus infection.
    Li K; Xu C; Zhang J
    Gene; 2011 Oct; 485(2):106-13. PubMed ID: 21708230
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How to pattern a leaf.
    Bolduc N; O'Connor D; Moon J; Lewis M; Hake S
    Cold Spring Harb Symp Quant Biol; 2012; 77():47-51. PubMed ID: 23174765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gel-based proteomics reveals potential novel protein markers of ozone stress in leaves of cultivated bean and maize species of Panama.
    Torres NL; Cho K; Shibato J; Hirano M; Kubo A; Masuo Y; Iwahashi H; Jwa NS; Agrawal GK; Rakwal R
    Electrophoresis; 2007 Dec; 28(23):4369-81. PubMed ID: 17987633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene regulatory interactions at lateral organ boundaries in maize.
    Lewis MW; Bolduc N; Hake K; Htike Y; Hay A; Candela H; Hake S
    Development; 2014 Dec; 141(23):4590-7. PubMed ID: 25359728
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on endogenous hormone levels and opposite phyllotaxy in maize leaf primordial.
    Ye H; Han GM; Ma Q; Tan YQ; Jiang HY; Zhu SW; Cheng BJ
    Genet Mol Res; 2015 Dec; 14(4):17019-27. PubMed ID: 26681049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of Leaf Angle by Auricle Development in Maize.
    Kong F; Zhang T; Liu J; Heng S; Shi Q; Zhang H; Wang Z; Ge L; Li P; Lu X; Li G
    Mol Plant; 2017 Mar; 10(3):516-519. PubMed ID: 28216423
    [No Abstract]   [Full Text] [Related]  

  • 20. Mosaic analysis of extended auricle1 (eta1) suggests that a two-way signaling pathway is involved in positioning the blade/sheath boundary in Zea mays.
    Osmont KS; Sadeghian N; Freeling M
    Dev Biol; 2006 Jul; 295(1):1-12. PubMed ID: 16684518
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.