BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 26244980)

  • 21. Rapid activity-induced transcription of Arc and other IEGs relies on poised RNA polymerase II.
    Saha RN; Wissink EM; Bailey ER; Zhao M; Fargo DC; Hwang JY; Daigle KR; Fenn JD; Adelman K; Dudek SM
    Nat Neurosci; 2011 May; 14(7):848-56. PubMed ID: 21623364
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signaling pathways differentially affect RNA polymerase II initiation, pausing, and elongation rate in cells.
    Danko CG; Hah N; Luo X; Martins AL; Core L; Lis JT; Siepel A; Kraus WL
    Mol Cell; 2013 Apr; 50(2):212-22. PubMed ID: 23523369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mammalian Ssu72 phosphatase preferentially considers tissue-specific actively transcribed gene expression by regulating RNA Pol II transcription.
    Kim HS; Jeon Y; Jang YO; Lee H; Shin Y; Lee CW
    Theranostics; 2022; 12(1):186-206. PubMed ID: 34987641
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Profiling RNA polymerase II using the fast chromatin immunoprecipitation method.
    Nelson J; Denisenko O; Bomsztyk K
    Methods Mol Biol; 2011; 703():219-34. PubMed ID: 21125493
    [TBL] [Abstract][Full Text] [Related]  

  • 25. c-Myc regulates transcriptional pause release.
    Rahl PB; Lin CY; Seila AC; Flynn RA; McCuine S; Burge CB; Sharp PA; Young RA
    Cell; 2010 Apr; 141(3):432-45. PubMed ID: 20434984
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNA polymerase II promoter-proximal pausing upregulates c-fos gene expression.
    Fivaz J; Bassi MC; Pinaud S; Mirkovitch J
    Gene; 2000 Sep; 255(2):185-94. PubMed ID: 11024278
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional Burst Initiation and Polymerase Pause Release Are Key Control Points of Transcriptional Regulation.
    Bartman CR; Hamagami N; Keller CA; Giardine B; Hardison RC; Blobel GA; Raj A
    Mol Cell; 2019 Feb; 73(3):519-532.e4. PubMed ID: 30554946
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Coordination of RNA Polymerase II Pausing and 3' End Processing Factor Recruitment with Alternative Polyadenylation.
    Fusby B; Kim S; Erickson B; Kim H; Peterson ML; Bentley DL
    Mol Cell Biol; 2016 Jan; 36(2):295-303. PubMed ID: 26527620
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential modulatory effects of alpha- and beta-adrenoceptor agonists and antagonists on cortical immediate-early gene expression following focal cerebrocortical lesion-induced spreading depression.
    Shen PJ; Gundlach AL
    Brain Res Mol Brain Res; 2000 Nov; 83(1-2):133-44. PubMed ID: 11072104
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program.
    Gomes NP; Bjerke G; Llorente B; Szostek SA; Emerson BM; Espinosa JM
    Genes Dev; 2006 Mar; 20(5):601-12. PubMed ID: 16510875
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA polymerase is poised for activation across the genome.
    Muse GW; Gilchrist DA; Nechaev S; Shah R; Parker JS; Grissom SF; Zeitlinger J; Adelman K
    Nat Genet; 2007 Dec; 39(12):1507-11. PubMed ID: 17994021
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural and biochemical analysis of DNA lesion-induced RNA polymerase II arrest.
    Oh J; Xu J; Chong J; Wang D
    Methods; 2019 Apr; 159-160():29-34. PubMed ID: 30797902
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RNA polymerase II localizes at sites of human cytomegalovirus immediate-early RNA synthesis and processing.
    Snaar SP; Vincent M; Dirks RW
    J Histochem Cytochem; 1999 Feb; 47(2):245-54. PubMed ID: 9889260
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Rapid Genome-wide Recruitment of RNA Polymerase II Drives Transcription, Splicing, and Translation Events during T Cell Responses.
    Davari K; Lichti J; Gallus C; Greulich F; Uhlenhaut NH; Heinig M; Friedel CC; Glasmacher E
    Cell Rep; 2017 Apr; 19(3):643-654. PubMed ID: 28423325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional regulation patterns revealed by high resolution chromatin immunoprecipitation during cardiac hypertrophy.
    Sayed D; He M; Yang Z; Lin L; Abdellatif M
    J Biol Chem; 2013 Jan; 288(4):2546-58. PubMed ID: 23229551
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Topoisomerase IIα represses transcription by enforcing promoter-proximal pausing.
    Herrero-Ruiz A; Martínez-García PM; Terrón-Bautista J; Millán-Zambrano G; Lieberman JA; Jimeno-González S; Cortés-Ledesma F
    Cell Rep; 2021 Apr; 35(2):108977. PubMed ID: 33852840
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Infection by Herpes Simplex Virus 1 Causes Near-Complete Loss of RNA Polymerase II Occupancy on the Host Cell Genome.
    Abrisch RG; Eidem TM; Yakovchuk P; Kugel JF; Goodrich JA
    J Virol; 2015 Dec; 90(5):2503-13. PubMed ID: 26676778
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Integrator Complex Attenuates Promoter-Proximal Transcription at Protein-Coding Genes.
    Elrod ND; Henriques T; Huang KL; Tatomer DC; Wilusz JE; Wagner EJ; Adelman K
    Mol Cell; 2019 Dec; 76(5):738-752.e7. PubMed ID: 31809743
    [TBL] [Abstract][Full Text] [Related]  

  • 39. GAGA factor, a positive regulator of global gene expression, modulates transcriptional pausing and organization of upstream nucleosomes.
    Tsai SY; Chang YL; Swamy KB; Chiang RL; Huang DH
    Epigenetics Chromatin; 2016; 9():32. PubMed ID: 27468311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. PAF1, a Molecular Regulator of Promoter-Proximal Pausing by RNA Polymerase II.
    Chen FX; Woodfin AR; Gardini A; Rickels RA; Marshall SA; Smith ER; Shiekhattar R; Shilatifard A
    Cell; 2015 Aug; 162(5):1003-15. PubMed ID: 26279188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.