BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 26245277)

  • 1. jEcho: an Evolved weight vector to CHaracterize the protein's posttranslational modification mOtifs.
    Zhao M; Zhang Z; Mai G; Luo Y; Zhou F
    Interdiscip Sci; 2015 Jun; 7(2):194-9. PubMed ID: 26245277
    [TBL] [Abstract][Full Text] [Related]  

  • 2. jEcho: an evolved weight vector to characterize the protein's post-translational modification motifs.
    Zhao M; Zhang Z; Mai G; Luo Y; Zhou F
    Interdiscip Sci; 2015 Apr; ():. PubMed ID: 25863965
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of posttranslational modification sites from amino acid sequences with kernel methods.
    Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N
    J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of posttranslational modification of proteins from their amino acid sequence.
    Eisenhaber B; Eisenhaber F
    Methods Mol Biol; 2010; 609():365-84. PubMed ID: 20221930
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iPTMnet: Integrative Bioinformatics for Studying PTM Networks.
    Ross KE; Huang H; Ren J; Arighi CN; Li G; Tudor CO; Lv M; Lee JY; Chen SC; Vijay-Shanker K; Wu CH
    Methods Mol Biol; 2017; 1558():333-353. PubMed ID: 28150246
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MPTM: A tool for mining protein post-translational modifications from literature.
    Sun D; Wang M; Li A
    J Bioinform Comput Biol; 2017 Oct; 15(5):1740005. PubMed ID: 28982288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification, Quantification, and Site Localization of Protein Posttranslational Modifications via Mass Spectrometry-Based Proteomics.
    Ke M; Shen H; Wang L; Luo S; Lin L; Yang J; Tian R
    Adv Exp Med Biol; 2016; 919():345-382. PubMed ID: 27975226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iPTMnet: an integrated resource for protein post-translational modification network discovery.
    Huang H; Arighi CN; Ross KE; Ren J; Li G; Chen SC; Wang Q; Cowart J; Vijay-Shanker K; Wu CH
    Nucleic Acids Res; 2018 Jan; 46(D1):D542-D550. PubMed ID: 29145615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PEIMAN 1.0: Post-translational modification Enrichment, Integration and Matching ANalysis.
    Nickchi P; Jafari M; Kalantari S
    Database (Oxford); 2015; 2015():bav037. PubMed ID: 25911152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. AutoMotif server: prediction of single residue post-translational modifications in proteins.
    Plewczynski D; Tkacz A; Wyrwicz LS; Rychlewski L
    Bioinformatics; 2005 May; 21(10):2525-7. PubMed ID: 15728119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-parametric Bayesian approach to post-translational modification refinement of predictions from tandem mass spectrometry.
    Chung C; Emili A; Frey BJ
    Bioinformatics; 2013 Apr; 29(7):821-9. PubMed ID: 23419374
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel sequence-based method for phosphorylation site prediction with feature selection and analysis.
    He ZS; Shi XH; Kong XY; Zhu YB; Chou KC
    Protein Pept Lett; 2012 Jan; 19(1):70-8. PubMed ID: 21919857
    [TBL] [Abstract][Full Text] [Related]  

  • 13. dbPTM in 2019: exploring disease association and cross-talk of post-translational modifications.
    Huang KY; Lee TY; Kao HJ; Ma CT; Lee CC; Lin TH; Chang WC; Huang HD
    Nucleic Acids Res; 2019 Jan; 47(D1):D298-D308. PubMed ID: 30418626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Advances In Protein Posttranslational Modification Site and Protein Cleavage Prediction.
    Pakhrin SC; Pokharel S; Saigo H; Kc DB
    Methods Mol Biol; 2022; 2499():285-322. PubMed ID: 35696087
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PTMD: A Database of Human Disease-associated Post-translational Modifications.
    Xu H; Wang Y; Lin S; Deng W; Peng D; Cui Q; Xue Y
    Genomics Proteomics Bioinformatics; 2018 Aug; 16(4):244-251. PubMed ID: 30244175
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease.
    Torres MP; Dewhurst H; Sundararaman N
    Mol Cell Proteomics; 2016 Nov; 15(11):3513-3528. PubMed ID: 27697855
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ptm: an R package for the study of methionine sulfoxidation and other posttranslational modifications.
    Aledo JC
    Bioinformatics; 2021 Nov; 37(21):3979-3980. PubMed ID: 33964156
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gly-PseAAC: Identifying protein lysine glycation through sequences.
    Xu Y; Li L; Ding J; Wu LY; Mai G; Zhou F
    Gene; 2017 Feb; 602():1-7. PubMed ID: 27845204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-residue posttranslational modification sites at the N-terminus, C-terminus or in-between: To be or not to be exposed for enzyme access.
    Sirota FL; Maurer-Stroh S; Eisenhaber B; Eisenhaber F
    Proteomics; 2015 Jul; 15(14):2525-46. PubMed ID: 26038108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MAPRes: Mining association patterns among preferred amino acid residues in the vicinity of amino acids targeted for post-translational modifications.
    Ahmad I; Qazi WM; Khurshid A; Ahmad M; Hoessli DC; Khawaja I; Choudhary MI; Shakoori AR;
    Proteomics; 2008 May; 8(10):1954-8. PubMed ID: 18491291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.