These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 26245296)

  • 41. Hydrogen crystallization in low-density aerogels.
    Kucheyev SO; Van Cleve E; Johnston LT; Gammon SA; Worsley MA
    Langmuir; 2015 Apr; 31(13):3854-60. PubMed ID: 25781182
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and characterization of highly crystalline graphene aerogels.
    Worsley MA; Pham TT; Yan A; Shin SJ; Lee JR; Bagge-Hansen M; Mickelson W; Zettl A
    ACS Nano; 2014 Oct; 8(10):11013-22. PubMed ID: 25283720
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Carbon nanotube-bonded graphene hybrid aerogels and their application to water purification.
    Lee B; Lee S; Lee M; Jeong DH; Baek Y; Yoon J; Kim YH
    Nanoscale; 2015 Apr; 7(15):6782-9. PubMed ID: 25807182
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging Carbon-Nanofiber Aerogels: Chemosynthesis versus Biosynthesis.
    Wu ZY; Liang HW; Hu BC; Yu SH
    Angew Chem Int Ed Engl; 2018 Nov; 57(48):15646-15662. PubMed ID: 29770605
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Tailoring the Performance of Graphene Aerogels for Oil/Organic Solvent Separation by 1-Step Solvothermal Approach.
    Pruna A; Cárcel AC; Barjola A; Benedito A; Giménez E
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31357551
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Ultracompressible, high-rate supercapacitors from graphene-coated carbon nanotube aerogels.
    Wilson E; Islam MF
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5612-8. PubMed ID: 25699583
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Chemical Foaming Coupled Self-Etching: A Multiscale Processing Strategy for Ultrahigh-Surface-Area Carbon Aerogels.
    Qi F; Xia Z; Jin J; Fu X; Wei W; Wang S; Sun G
    ACS Appl Mater Interfaces; 2018 Jan; 10(3):2819-2827. PubMed ID: 29227086
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor.
    Rao AV; Bhagat SD; Hirashima H; Pajonk GM
    J Colloid Interface Sci; 2006 Aug; 300(1):279-85. PubMed ID: 16707131
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Removal of BTEX vapours from waste gas streams using silica aerogels of different hydrophobicity.
    Standeker S; Novak Z; Knez Z
    J Hazard Mater; 2009 Jun; 165(1-3):1114-8. PubMed ID: 19095355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Controlled porous structures of graphene aerogels and their effect on supercapacitor performance.
    Jung SM; Mafra DL; Lin CT; Jung HY; Kong J
    Nanoscale; 2015 Mar; 7(10):4386-93. PubMed ID: 25682978
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Inter- and intra-primary-particle structure of monolithic carbon aerogels obtained with varying solvents.
    Fairén-Jiménez D; Carrasco-Marín F; Moreno-Castilla C
    Langmuir; 2008 Mar; 24(6):2820-5. PubMed ID: 18257593
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formation of graphitic structures in cobalt- and nickel-doped carbon aerogels.
    Fu R; Baumann TF; Cronin S; Dresselhaus G; Dresselhaus MS; Satcher JH
    Langmuir; 2005 Mar; 21(7):2647-51. PubMed ID: 15779927
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative study of aerogels obtained from differently prepared nanocellulose fibers.
    Chen W; Li Q; Wang Y; Yi X; Zeng J; Yu H; Liu Y; Li J
    ChemSusChem; 2014 Jan; 7(1):154-61. PubMed ID: 24420495
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Porous CdTe nanocrystal assemblies: ligation effects on the gelation process and the properties of resultant aerogels.
    Yao Q; Brock SL
    Inorg Chem; 2011 Oct; 50(20):9985-92. PubMed ID: 21954845
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Superelastic and superhydrophobic nanofiber-assembled cellular aerogels for effective separation of oil/water emulsions.
    Si Y; Fu Q; Wang X; Zhu J; Yu J; Sun G; Ding B
    ACS Nano; 2015 Apr; 9(4):3791-9. PubMed ID: 25853279
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Tailoring mechanical properties of aerogels for aerospace applications.
    Randall JP; Meador MA; Jana SC
    ACS Appl Mater Interfaces; 2011 Mar; 3(3):613-26. PubMed ID: 21361281
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water.
    Yang Y; Tong Z; Ngai T; Wang C
    ACS Appl Mater Interfaces; 2014 May; 6(9):6351-60. PubMed ID: 24738840
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of concentration of glycidol on the properties of resorcinol-formaldehyde aerogels and carbon aerogels.
    Zhu X; Hope-Weeks LJ; Yu Y; Yuan J; Zhang X; Yu H; Liu J; Li X; Zeng X
    RSC Adv; 2022 Jul; 12(31):20191-20198. PubMed ID: 35919604
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Zirconia aerogels for thermal management: Review of synthesis, processing, and properties information architecture.
    Walker RC; Potochniak AE; Hyer AP; Ferri JK
    Adv Colloid Interface Sci; 2021 Sep; 295():102464. PubMed ID: 34364134
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Edge-to-edge assembled graphene oxide aerogels with outstanding mechanical performance and superhigh chemical activity.
    Huang H; Chen P; Zhang X; Lu Y; Zhan W
    Small; 2013 Apr; 9(8):1397-404. PubMed ID: 23512583
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.