These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 26245306)

  • 1. Computational Field Shaping for Deep Brain Stimulation With Thousands of Contacts in a Novel Electrode Geometry.
    Willsie AC; Dorval AD
    Neuromodulation; 2015 Oct; 18(7):542-50; discussion 550-1. PubMed ID: 26245306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current density distributions, field distributions and impedance analysis of segmented deep brain stimulation electrodes.
    Wei XF; Grill WM
    J Neural Eng; 2005 Dec; 2(4):139-47. PubMed ID: 16317238
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of electrode design on the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    J Neural Eng; 2006 Mar; 3(1):1-8. PubMed ID: 16510937
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of interpolation error, electrode geometry, and the electrode-tissue interface on models of electric fields produced by deep brain stimulation.
    Howell B; Naik S; Grill WM
    IEEE Trans Biomed Eng; 2014 Feb; 61(2):297-307. PubMed ID: 24448594
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sources and effects of electrode impedance during deep brain stimulation.
    Butson CR; Maks CB; McIntyre CC
    Clin Neurophysiol; 2006 Feb; 117(2):447-54. PubMed ID: 16376143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Steering deep brain stimulation fields using a high resolution electrode array.
    Toader E; Decre MM; Martens HC
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2061-4. PubMed ID: 21096152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Avoiding Internal Capsule Stimulation With a New Eight-Channel Steering Deep Brain Stimulation Lead.
    van Dijk KJ; Verhagen R; Bour LJ; Heida C; Veltink PH
    Neuromodulation; 2018 Aug; 21(6):553-561. PubMed ID: 29034586
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Current steering to control the volume of tissue activated during deep brain stimulation.
    Butson CR; McIntyre CC
    Brain Stimul; 2008 Jan; 1(1):7-15. PubMed ID: 19142235
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling deep brain stimulation: point source approximation versus realistic representation of the electrode.
    Zhang TC; Grill WM
    J Neural Eng; 2010 Dec; 7(6):066009. PubMed ID: 21084730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental and theoretical characterization of the voltage distribution generated by deep brain stimulation.
    Miocinovic S; Lempka SF; Russo GS; Maks CB; Butson CR; Sakaie KE; Vitek JL; McIntyre CC
    Exp Neurol; 2009 Mar; 216(1):166-76. PubMed ID: 19118551
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Finite difference time domain (FDTD) modeling of implanted deep brain stimulation electrodes and brain tissue.
    Gabran SR; Saad JH; Salama MM; Mansour RR
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6485-8. PubMed ID: 19964439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The peri-electrode space is a significant element of the electrode-brain interface in deep brain stimulation: a computational study.
    Yousif N; Bayford R; Bain PG; Liu X
    Brain Res Bull; 2007 Oct; 74(5):361-8. PubMed ID: 17845911
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of methodologies for modeling directional deep brain stimulation electrodes.
    Frankemolle-Gilbert AM; Howell B; Bower KL; Veltink PH; Heida T; McIntyre CC
    PLoS One; 2021; 16(12):e0260162. PubMed ID: 34910744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Method for patient-specific finite element modeling and simulation of deep brain stimulation.
    Aström M; Zrinzo LU; Tisch S; Tripoliti E; Hariz MI; Wårdell K
    Med Biol Eng Comput; 2009 Jan; 47(1):21-8. PubMed ID: 18936999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigating the depth electrode-brain interface in deep brain stimulation using finite element models with graded complexity in structure and solution.
    Yousif N; Liu X
    J Neurosci Methods; 2009 Oct; 184(1):142-51. PubMed ID: 19596028
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimizing deep brain stimulation parameter selection with detailed models of the electrode-tissue interface.
    McIntyre CC; Butson CR; Maks CB; Noecker AM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():893-5. PubMed ID: 17946871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and in vivo evaluation of more efficient and selective deep brain stimulation electrodes.
    Howell B; Huynh B; Grill WM
    J Neural Eng; 2015 Aug; 12(4):046030. PubMed ID: 26170244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of the implanted pulse generator as reference electrode in finite element model of monopolar deep brain stimulation.
    Walckiers G; Fuchs B; Thiran JP; Mosig JR; Pollo C
    J Neurosci Methods; 2010 Jan; 186(1):90-6. PubMed ID: 19895845
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Clinical deep brain stimulation strategies for orientation-selective pathway activation.
    Slopsema JP; Peña E; Patriat R; Lehto LJ; Gröhn O; Mangia S; Harel N; Michaeli S; Johnson MD
    J Neural Eng; 2018 Oct; 15(5):056029. PubMed ID: 30095084
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo impedance spectroscopy of deep brain stimulation electrodes.
    Lempka SF; Miocinovic S; Johnson MD; Vitek JL; McIntyre CC
    J Neural Eng; 2009 Aug; 6(4):046001. PubMed ID: 19494421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.