These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 26245306)

  • 21. The influence of reactivity of the electrode-brain interface on the crossing electric current in therapeutic deep brain stimulation.
    Yousif N; Bayford R; Liu X
    Neuroscience; 2008 Oct; 156(3):597-606. PubMed ID: 18761058
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spherical statistics for characterizing the spatial distribution of deep brain stimulation effects on neuronal activity.
    Xiao Y; Johnson MD
    J Neurosci Methods; 2015 Nov; 255():52-65. PubMed ID: 26275582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modeling the field distribution in deep brain stimulation: the influence of anisotropy of brain tissue.
    Schmidt C; van Rienen U
    IEEE Trans Biomed Eng; 2012 Jun; 59(6):1583-92. PubMed ID: 22410323
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Computational modeling of pedunculopontine nucleus deep brain stimulation.
    Zitella LM; Mohsenian K; Pahwa M; Gloeckner C; Johnson MD
    J Neural Eng; 2013 Aug; 10(4):045005. PubMed ID: 23723145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A computational model for bipolar deep brain stimulation of the subthalamic nucleus.
    Iacono MI; Neufeld E; Bonmassar G; Akinnagbe E; Jakab A; Cohen E; Kuster N; Kainz W; Angelone LM
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6258-61. PubMed ID: 25571427
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational analysis of deep brain stimulation.
    McIntyre CC; Miocinovic S; Butson CR
    Expert Rev Med Devices; 2007 Sep; 4(5):615-22. PubMed ID: 17850196
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Matching geometry and stimulation parameters of electrodes for deep brain stimulation experiments--numerical considerations.
    Gimsa U; Schreiber U; Habel B; Flehr J; van Rienen U; Gimsa J
    J Neurosci Methods; 2006 Jan; 150(2):212-27. PubMed ID: 16095718
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantifying the effects of the electrode-brain interface on the crossing electric currents in deep brain recording and stimulation.
    Yousif N; Bayford R; Wang S; Liu X
    Neuroscience; 2008 Mar; 152(3):683-91. PubMed ID: 18304747
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Theoretical analysis of the local field potential in deep brain stimulation applications.
    Lempka SF; McIntyre CC
    PLoS One; 2013; 8(3):e59839. PubMed ID: 23555799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Modeling the current distribution across the depth electrode-brain interface in deep brain stimulation.
    Yousif N; Liu X
    Expert Rev Med Devices; 2007 Sep; 4(5):623-31. PubMed ID: 17850197
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Variation in deep brain stimulation electrode impedance over years following electrode implantation.
    Satzer D; Lanctin D; Eberly LE; Abosch A
    Stereotact Funct Neurosurg; 2014; 92(2):94-102. PubMed ID: 24503709
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatial steering of deep brain stimulation volumes using a novel lead design.
    Martens HCF; Toader E; Decré MMJ; Anderson DJ; Vetter R; Kipke DR; Baker KB; Johnson MD; Vitek JL
    Clin Neurophysiol; 2011 Mar; 122(3):558-566. PubMed ID: 20729143
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evaluation of high-perimeter electrode designs for deep brain stimulation.
    Howell B; Grill WM
    J Neural Eng; 2014 Aug; 11(4):046026. PubMed ID: 25029124
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel lead design enables selective deep brain stimulation of neural populations in the subthalamic region.
    van Dijk KJ; Verhagen R; Chaturvedi A; McIntyre CC; Bour LJ; Heida C; Veltink PH
    J Neural Eng; 2015 Aug; 12(4):046003. PubMed ID: 26020096
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Towards computer-assisted deep brain stimulation targeting with multiple active contacts.
    Bériault S; Xiao Y; Bailey L; Collins DL; Sadikot AF; Pike GB
    Med Image Comput Comput Assist Interv; 2012; 15(Pt 1):487-94. PubMed ID: 23285587
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model-Based Comparison of Deep Brain Stimulation Array Functionality with Varying Number of Radial Electrodes and Machine Learning Feature Sets.
    Teplitzky BA; Zitella LM; Xiao Y; Johnson MD
    Front Comput Neurosci; 2016; 10():58. PubMed ID: 27375470
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Lead-DBS: a toolbox for deep brain stimulation electrode localizations and visualizations.
    Horn A; Kühn AA
    Neuroimage; 2015 Feb; 107():127-135. PubMed ID: 25498389
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Targeting Neuronal Fiber Tracts for Deep Brain Stimulation Therapy Using Interactive, Patient-Specific Models.
    Janson AP; Butson CR
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30148495
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue.
    Mädler B; Coenen VA
    AJNR Am J Neuroradiol; 2012 Jun; 33(6):1072-80. PubMed ID: 22300931
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electric field distribution in a finite-volume head model of deep brain stimulation.
    Grant PF; Lowery MM
    Med Eng Phys; 2009 Nov; 31(9):1095-103. PubMed ID: 19656716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.