BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

491 related articles for article (PubMed ID: 26245321)

  • 1. Modeling and simulating the neuromuscular mechanisms regulating ankle and knee joint stiffness during human locomotion.
    Sartori M; Maculan M; Pizzolato C; Reggiani M; Farina D
    J Neurophysiol; 2015 Oct; 114(4):2509-27. PubMed ID: 26245321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lower limb joint stiffness and muscle co-contraction adaptations to instability footwear during locomotion.
    Apps C; Sterzing T; O'Brien T; Lake M
    J Electromyogr Kinesiol; 2016 Dec; 31():55-62. PubMed ID: 27684529
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of passive elastic joint moments in the lower extremities.
    Riener R; Edrich T
    J Biomech; 1999 May; 32(5):539-44. PubMed ID: 10327008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Musculoskeletal stiffness during hopping and running does not change following downhill backwards walking.
    Joseph CW; Bradshaw EJ; Kemp J; Clark RA
    Sports Biomech; 2014 Sep; 13(3):241-58. PubMed ID: 25325769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Knee and ankle joint stiffness in sprint running.
    Kuitunen S; Komi PV; Kyröläinen H
    Med Sci Sports Exerc; 2002 Jan; 34(1):166-73. PubMed ID: 11782663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. EMG-driven forward-dynamic estimation of muscle force and joint moment about multiple degrees of freedom in the human lower extremity.
    Sartori M; Reggiani M; Farina D; Lloyd DG
    PLoS One; 2012; 7(12):e52618. PubMed ID: 23300725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal muscle fascicle length and tendon stiffness for maximising gastrocnemius efficiency during human walking and running.
    Lichtwark GA; Wilson AM
    J Theor Biol; 2008 Jun; 252(4):662-73. PubMed ID: 18374362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Joint stiffness of the ankle and the knee in running.
    Günther M; Blickhan R
    J Biomech; 2002 Nov; 35(11):1459-74. PubMed ID: 12413965
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid neuromusculoskeletal modeling to best track joint moments using a balance between muscle excitations derived from electromyograms and optimization.
    Sartori M; Farina D; Lloyd DG
    J Biomech; 2014 Nov; 47(15):3613-21. PubMed ID: 25458151
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The three-dimensional determination of internal loads in the lower extremity.
    Glitsch U; Baumann W
    J Biomech; 1997; 30(11-12):1123-31. PubMed ID: 9456380
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leg and joint stiffness in human hopping.
    Kuitunen S; Ogiso K; Komi PV
    Scand J Med Sci Sports; 2011 Dec; 21(6):e159-67. PubMed ID: 22126723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Force-sharing between cat soleus and gastrocnemius muscles during walking: explanations based on electrical activity, properties, and kinematics.
    Prilutsky BI; Herzog W; Allinger TL
    J Biomech; 1994 Oct; 27(10):1223-35. PubMed ID: 7962010
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.
    Lai A; Schache AG; Lin YC; Pandy MG
    J Exp Biol; 2014 Sep; 217(Pt 17):3159-68. PubMed ID: 24948642
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between leg stiffness, forces and neural control of the leg musculature during the stretch-shortening cycle is dependent on the anticipation of drop height.
    Helm M; Freyler K; Waldvogel J; Gollhofer A; Ritzmann R
    Eur J Appl Physiol; 2019 Sep; 119(9):1981-1999. PubMed ID: 31367910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increase in Leg Stiffness Reduces Joint Work During Backpack Carriage Running at Slow Velocities.
    Liew B; Netto K; Morris S
    J Appl Biomech; 2017 Oct; 33(5):347-353. PubMed ID: 28530461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constant and variable stiffness and damping of the leg joints in human hopping.
    Rapoport S; Mizrahi J; Kimmel E; Verbitsky O; Isakov E
    J Biomech Eng; 2003 Aug; 125(4):507-14. PubMed ID: 12968575
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring Muscle-Tendon Unit Power from Ankle Joint Power during the Push-Off Phase of Human Walking: Insights from a Multiarticular EMG-Driven Model.
    Honert EC; Zelik KE
    PLoS One; 2016; 11(10):e0163169. PubMed ID: 27764110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo behavior of the human soleus muscle with increasing walking and running speeds.
    Lai A; Lichtwark GA; Schache AG; Lin YC; Brown NA; Pandy MG
    J Appl Physiol (1985); 2015 May; 118(10):1266-75. PubMed ID: 25814636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.